Hypersonic Shock/Boundary-Layer Interaction Database: New and Corrected Data

Gary S. Settles and Lori J. Dodson

Department of Mechanical Engineering Penn State University University Park, PA 16802

Prepared for Ames Research Center CONTRACT NAG2-781 April 1994

Ames Research Center Moffett Field, California 94035-1000

		-
		r
		•

Hypersonic Shock/Boundary-Layer Interaction Database: New and Corrected Data

Table of Contents

Introduction	•	•	•	•	•	•	•	•	•	•	•	1
Discussion of	New 1	Data					•			•	•	2
Discussion of	Corre	cted I	Data				•	•		•		4
Closure		•		•			•				•	7
References		•		•		•	•				•	8
Appendix: Da	ata Tal	bulatio	n	,	•		•			•		11

			1
			F
		•	
			•

Introduction

As described fully in Ref. 1, an effort was begun in 1989 at the Penn State University Gas Dynamics Laboratory to perform a critical review of the available hypersonic data and to assemble a selected database for purposes of CFD code validation and turbulence modeling. The effort was sponsored by the NASP Program through NASA-Ames Research Center, and was a part of an overall task to develop compressible turbulence models. Ref. 1, a database report on hypersonic shock wave/turbulent boundary-layer interactions, was the product of phase 1 of that effort. Phase 2 produced a similar database, reported in Ref. 2, covering the topics of attached hypersonic boundary layers in pressure gradients and compressible turbulent mixing layers. The present report represents the result of the third and final phase, namely, recent additions and corrections to the hypersonic shock wave/turbulent boundary-layer interaction database originally given in Ref. 1.

The new datasets included here are those which have come to our attention since the completion of Phase 1 of the database effort at the end of 1990, and which were able to pass the acceptance criteria originally applied in Phase 1. Those criteria are listed by name below, but the reader is directed to Ref. 1 for details of their application:

(NECESSARY CRITERIA)

- 1) BASELINE APPLICABILITY
- 2) SIMPLICITY
- 3) SPECIFIC APPLICABILITY
- 4) WELL-DEFINED EXPERIMENTAL BOUNDARY CONDITIONS
- 5) WELL-DEFINED EXPERIMENTAL ERROR BOUNDS
- 6) CONSISTENCY CRITERION
- 7) ADEQUATE DOCUMENTATION OF DATA
- 8) ADEQUATE SPATIAL RESOLUTION OF DATA (DESIRABLE CRITERIA)
 - 1) TURBULENCE DATA
 - 2) REALISTIC TEST CONDITIONS
 - 3) NON-INTRUSIVE INSTRUMENTATION
 - 4) REDUNDANT MEASUREMENTS
 - 5) FLOW STRUCTURE AND PHYSICS

Discussion of New Data

Ref.: 3-6

Author: Kussoy and Horstman

Geometry: 3-D Fin Mach number: 8.2

Data: pwall ,qwall ,cf , flowfield pitot surveys

Ref.: 7-9

Author: Rodi and Dolling

Geometry: 3-D Fin Mach number: 4.9

Data: p_{wall}, q_{wall}, surface-flow traces

Ref.: 10-11

Author: Lee and Settles Geometry: 3-D Fin Mach number: 3, 4

Data: c_h

Ref.: 12-13

Author: Hsu and Settles Geometry: 3-D Fin Mach number: 3, 4

Data: flowfield density maps

Ref.: 14

Author: Kussoy and Horstman

Geometry: Crossing Oblique Shock Waves

Mach number: 8.3

Data: pwall qwall flowfield pitot surveys

Ref.: 15-17

Author: Garrison and Settles

Geometry: Crossing Oblique Shock Waves

Mach number: 4

Data: p_{wall}, c_f, flowfield pitot surveys

Ref.: 18-20

Author: Kuntz et al.

Geometry: 2-D Compression Corner

Mach number: 3

Data: pwell, mean & fluctuating flowfield surveys (2-channel LDV)

The new data since 1991 can be characterized in 3 groups as follows: 1) Mach 8 single- and double-fin (crossing-shock) interactions, 2) more advanced measurements of supersonic single- and double-fin interactions, and 3) more advanced measurements of a supersonic 2-D compression corner.

The new Mach 8 data are the result of a concerted experimental program by Kussoy and Horstman in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (Refs. 3-6 and 14). These carefully-documented datasets fulfill several of the needs pointed out in Ref. 1 and its companion technical paper (Ref. 21), including Mach number firmly within the hypersonic regime, more-complex interaction types, and more emphasis on 3-D interactions.

The new supersonic single-fin-interaction datasets are the results of research programs at Penn State (Refs. 10-13) and the University of Texas-Austin (Refs. 7-9) aimed at providing advanced data for code validation and turbulence modeling. They feature heat transfer data to supplement the skin friction data already including in Ref. 1, and flowfield density maps obtained non-intrusively by conical holographic interferometry.

The new supersonic double-fin or crossing-shock interaction data (Refs. 15, 16) feature surface pressures, skin friction coefficients, and one plane of flowfield pitot-pressure data for this important inlet-type interaction. Readers interested in this interaction should also see Refs. 14 and 22-23.

Finally, the new 2-D compression corner data listed here (Refs. 18-20) were actually available previously, and were included in the literature search of Ref. 1, but, due to an oversight, were not subjected to an evaluation. That was unfortunate, since this dataset provides valuable LDV data to supplement the mean-flow and hot-wire data previously available for supersonic compression corners.

However, the availability of Mach 3 LDV compression corner data in Refs. 18-20 creates the following dilemma: The LDV magnitudes of Reynolds stresses in these interactions are 2 to 4 times larger than the levels found using hot-wire anemometry by Smits et al., Refs. 1 and 24) in a similar experiment. The LDV authors speculate (see discussion just prior to Conclusions of Ref. 18) that this discrepancy is due to inherent errors

in slanted-hot-wire calibrations. However, it is not reasonable to discount the hot-wire data on the basis of this speculation alone. Moreover, discussions with D. W. Kuntz concerning the LDV dataset appear to confirm that the higher LDV values of Reynolds stress are not simply due to shock unsteadiness, since pdf plots of the data do not reveal bimodal distributions. Though the hot-wire and LDV experiments were conducted in different test facilities varying in size by a factor of two, the test conditions were similar enough that the discrepancy cannot be thus explained. Given such an unresolved discrepancy, we have decided to retain both sets of data in the present database with the following warning:

Note: One or both of the Smits (Ref. 24) and Kuntz (Ref. 18) 2-D compression corner datasets is <u>incorrect</u> insofar as the levels of turbulent Reynolds stresses are concerned. It is not presently possible to determine where the error lies. Thus both experiments are included in the database in order to show possible limits on Reynolds stresses in such interactions, or possible error levels in the experiments. Beyond that, there is only the time-honored disclaimer, caveat emptor.

Discussion of Corrected Data

Ref.: 25, private communication Author: Zheltovodov, A. A., et al Geometry: 2-D Compression Corner

Mach number: 3

Data: pwall, ch, mean and fluctuating flowfield surveys (pitot and hot-

wire anemometry)

Two small but significant errors were found in this dataset as it is presented in Ref. 1. First, although the step height h = 15 mm, is correctly given for the mean-flow test geometry shown on page 108 of Ref. 1, no value is given for h in the case of the heat transfer model shown on the next page. In fact, h = 6 mm is the correct value for the heat transfer model.

Second, in the tabulated data on page 119 of Ref. 1 and in the data file ZHELT.DAT, a typographical error appears. In the heading:

The correct value of the incoming flat-plate heat transfer rate $\alpha 1$ should be 180 W/m²K. This correction has been verified by e-mail correspondence with A. A. Zheltovodov. The diskette accompanying the present report contains a corrected data file designated ZHELT2.DAT.

Ref.: 26

Author: Kim, K-S, et al Geometry: 3-D Fin Mach number: 3, 4

Data: p_{wall}, c_f, surface-flow angles

Based on a suggestion by D. J. Monson, the laser-skin-friction data reduction scheme of Kim (Ref. 26) was re-examined by Garrison (Ref. 17). It was found that, in the case of high peak skin friction levels in swept interactions where few laser interference fringes were available, Kim's approach led to a significant overestimate of the skin friction coefficient (Ref. 27). Garrison then repeated experiments at the peak points of Kim's strongest single-fin interaction (Mach 4, $\alpha = 20$ degrees) and found lower skin friction values than those originally found by Kim. Kim's original skin friction distribution for this case, as tabulated in Ref. 1, is:

MACH 4, ALPHA = 20 DEGREES

BETA CF ERROR BAR

56.00 9.868E-4 2.774E-5

51.00 9.835E-4 4.131E-5

48.80 1.114E-3 4.380E-5

44.00 1.199E-3 4.645E-5

40.50 1.820E-3 8.979E-5

39.50 1.655E-3 3.913E-5

31.00 2.649E-3 9.820E-5

26.30 9.494E-3 6.718E-4

23.30 7.733E-3 5.920E-4

21.00 5.749E-3 4.377E-4

With Garrison's correction of the 8th and 9th data points in this table, the corrected skin friction distribution is:

MACH 4, ALPHA = 20 DEGREES

BETA CF ERROR BAR

56.00 9.868E-4 2.774E-5

51.00 9.835E-4 4.131E-5

48.80 1.114E-3 4.380E-5

44.00 1.199E-3 4.645E-5

40.50 1.820E-3 8.979E-5

39.50 1.655E-3 3.913E-5

31.00 2.649E-3 9.820E-5

26.50 5.070E-3 5.000E-4

22.00 5.510E-3 5.000E-4

A corrected data file with the name KIM2.DAT has been included on the diskette accompanying the present report.

This error is an unfortunate one, since it changes the conclusions of Ref. 26. In fact, the computational solutions described there are in much better agreement with the corrected data than they were with the original, erroneous data. However, an examination of this dataset indicates that such peak-skin-friction errors occurred only in the strongest interaction (Mach 4, $\alpha = 20$ degrees), so that the results given in Refs. 1 and 26 and the conclusions drawn in ref. 26 for the weaker interactions are still believed to be valid.

Ref.: 28, 29

Author: Smits, A. J., et al

Geometry: 2-D Compression Corner

Mach number: 3

Data: pwall, cf. mean & fluctuating flowfield surveys (pitot and hot-

wire anemometry)

Since the publication of Ref. 1, several computational groups have made use of the mean-flow component of this dataset, which was tabulated and appeared in the ASCII file named SETTLES.DAT which was on the diskette included with Ref. 1. The dataset has thus had a rather thorough "workout," and several errors and problems were found as follows.

To put the mean-flow dataset in perspective, note that it consists of 1970's-vintage 2-D compression corner data taken by Settles et al. This work was originally reported in Refs. 30-33, which contain some discrepancies attributable to the original experimenters as described below. It was also submitted as a test case for the 1980-81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows, whence Ref. 28 was prepared. Ref. 28 is still a complete and almost-up-to-date discussion and tabulation of the dataset, but this reference is, by its nature, not widely available. Unfortunately, the later tabulation of the same dataset for Ref. 29 involved re-reduction of the raw data by persons other than the original experimenters, whereupon additional discrepancies occurred. An attempt is made here to resolve these issues.

1) Tabulation of Freestream and Incoming-Flow Conditions

Ref. 1 contains no proper tabulation of freestream and incoming-flow conditions for the four compression-corner cases included in the dataset. This information, from Ref. 28, is now included in the present data file SETTLES2.DAT and in the printed tabulation reproduced in this report, along with a list of definitions of terms. It should be noted that minor revisions of some of the incoming conditions, especially PINF values, have been made on account of a re-examination of the dataset after Ref. 28 was prepared.

2) Correction of Wall-Pressure Distributions

The manner in which the wall pressures were presented in Ref. 1 was inconsistent, confusing, and erroneous in places. The revised distributions are presented in terms of Pwall/PINF, with PINF tabulated nearby, and have been gone over carefully for errors.

3) Correction of Confusion Surrounding Skin-Friction Distributions

By far the worst problem with this dataset as presented in Ref. 1 concerns the skin friction distributions. The problem arose because the original experimenters chose to present the skin friction coefficient in two different forms: wall shear stress normalized by $\rho_{\infty}u_{\infty}^2$ ("CFINF" in Ref. 1) and normalized by $\rho_{\text{edge}}u_{\text{edge}}^2$ ("CF" in Ref. 1). In retrospect, the former form is the proper skin friction coefficient, while the latter is confusing and essentially worthless. This unfortunate situation has been cleared up in the present tabulation and SETTLES2.DAT file by deleting the "CF" column and renaming the "CFINF" column "CF," which is now unequivocally defined as the wall shear stress normalized by $\rho_{\infty}u_{\infty}^{2}$.

To make matters worse, early publications such as Ref. 33, due to a misunderstanding between experimental and computational authors, compared properly-defined computed skin friction distributions with the above improperly-defined experimental values. Thus Figs. 3 and 9 of Ref. 33 show data points which are significantly smaller than they should be. This mistake was later discovered and corrected, but the confusion factor still exists in the early literature. Hopefully the present report will clear up this confusion.

4) Mean Profile Corrections

A recheck of the mean flowfield profiles of this dataset uncovered some minor errors and needed clarifications. These have been corrected and implemented in the present SETTLES2.DAT file.

Closure

The publication of this report brings to an end the effort by the Penn State Gas Dynamics Lab, under NASA-Ames support, to establish a database for hypersonic boundary layers, interacting flows, and compressible mixing. There remains only the necessity to comment on the limitations of the present database for users of advanced turbulence models.

In general, none of the experiments included in this database contains enough information to properly specify the boundary conditions of any turbulent-flow computation. Assumptions must always be made. As an example of a reasonable assumption, Horstman (Ref. 34) carries out a finite-difference boundary-layer calculation for the test surface ahead of a shock/boundary-layer interaction. At the point where the computed boundary-layer displacement thickness matches that of the experiment, Horstman uses the computed boundary-layer turbulence quantities as input conditions. A similar approach is adopted by Morrison et al. (Ref. 35), who attempt to find a location where all three computed boundary-layer thicknesses and the skin friction coefficient are within 15% of the experimentally-determined values.

Both these approaches are reasonable, and similar schemes may work as well, if it is established that the incoming turbulent boundary-layer is in equilibrium in the experiment. However, in shock interaction cases where the incoming boundary-layer is not in equilibrium (of which there are none in the present database), much more documentation and detail of the incoming boundary layer would be required in the experiment in order to provide proper information for a computational simulation.

References

- 1) Settles, G. S., and Dodson, L. J., "Hypersonic Shock/Boundary-Layer Interaction Database," NASA CR 177577, April 1991.
- 2) Settles, G. S., and Dodson, L. J., "Hypersonic Turbulent Boundary-Layer and Free Shear Layer Database," NASA CR in press.
- 3) Kussoy, M. I., and Horstman, K. C., "Documentation of Two- and Three-Dimensional Shock-Wave/Turbulent Boundary-Layer Interaction Flows at Mach 8.2," NASA TM 103838, May 1991.
- 4) Kussoy, M. I., and Horstman, K. C., "Three-Dimensional Shock-Wave/Turbulent Boundary-Layer Interactions," AIAA Journal, Vol. 31, Jan. 1993, pp. 8-9.
- 5) Kussoy, M. I., Kim, K-S., and Horstman, K. C., "An Experimental Study of a Three-Dimensional Shock-Wave/Turbulent Boundary-Layer Interaction at Hypersonic Mach Number," AIAA Paper 91-1761, June 1991.
- 6) Knight, D.D., Horstman, C. C., and Monson, D. J., "The Hypersonic Shock-Wave/Turbulent Boundary-Layer Interaction Generated by a Sharp Fin at Mach 8.2," AIAA Paper 92-0747, Jan. 1992.
- 7) Rodi, P.E., Dolling, D.S. and Knight, D.D., "An Experimental/Computational Study of Heat Transfer in Sharp Fin Induced Turbulent Interactions at Mach 5," AIAA Paper 91-1764, June 1991.
- 8) Rodi, P.E. and Dolling, D.S., "An Experimental/Computational Study of Sharp Fin Induced Shock Wave/Turbulent Boundary Layer Interactions at Mach 5: Experimental Results," AIAA Paper 92-0749, January 1992.
- 9) Rodi, P.E., "An Experimental/Computational Study of Heat Transfer in Sharp Fin Induced Shock Wave/Turbulent Boundary Layer Interactions at Low Hypersonic Mach Numbers," Ph.D. Dissertation, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, December 1991.
- 10) Lee, Y., Settles, G. S., and Horstman, C. C., "Heat Transfer Measurements and CFD Comparison of Swept Shock Wave/Boundary-Layer Interactions," AIAA Paper 92-3665, July 1992, (to be published in AIAA Journal).
- 11) Lee, Y., "Heat Transfer Measurements in Swept Shock Wave/Turbulent Boundary-Layer Interactions," Ph.D. Dissertation, Department of Mechanical Engineering, Penn State University, June 1992.
- Hsu, J. C., and Settles, G. S., "Holographic Flowfield Density Measurements in Swept Shock-Wave/Turbulent Boundary-Layer Interactions," AIAA Paper 92-0746, Jan. 1992.

13) Hsu, J. C., "Holographic Flowfield Density Measurements in Swept Shock-Wave/Turbulent Boundary-Layer Interactions," Ph.D. Dissertation, Department of Mechanical Engineering, Penn State University, pending.

14) Kussoy, M. I., and Horstman, K. C., "Intersecting Shock-Wave/Turbulent Boundary-

Layer Interactions at mach 8.3,"NASA TM 103909, February 1992.

15) Garrison, T. J., Settles, G. S., Narayanswami, N., and Knight, D. D., "Structure of Crossing Shock-Wave/Turbulent Boundary-Layer Interactions," AIAA Paper 92-3670, July 1992, (to be published in AIAA Journal).

16) Garrison, T. J., Ph.D. Dissertation, Department of Mechanical Engineering, Penn

State University, pending.

- 17) Garrison, T. J., and Settles, G. S., "Laser Interferometer Measurements of Crossing-Shock Wave/Turbulent Boundary-Layer Interactions," AIAA Paper 93-3072, July 1993.
- 18) Kuntz, D.W., Amatucci, V.A. and Addy, A.L., "Turbulent Boundary-Layer Properties Downstream of the Shock-Wave/Boundary-Layer Interaction," *AIAA Journal*, Vol. 25, 1987, pp. 668-675.
- 19) Kuntz, D.W., Amatucci, V.A. and Addy, A.L., "An Experimental Study of the Shock-Wave-Turbulent Boundary-Layer Interaction," *Proc. Intl. Symposium on Laser Anemometry*, ASME FED Vol. 33, ed. A. Dybbs and P. A. Pfund, 1985, pp. 173-178.
- 20) Kuntz, D.W., "An Experimental Investigation of the Shock-Wave-Turbulent Boundary-Layer Interaction," Ph.D. Thesis, Dept. of Mechanical and Industrial Engineering, Univ. of Illinois at Urbana-Champagne, 1985.
- 21) Settles, G. S., and Dodson, L. J., "Hypersonic Shock/Boundary-Layer Interaction Database," AIAA Paper 91-1763, June 1991, (to published in AIAA Journal).
- Garrison, T. J., and Settles, G. S., "Interaction Strength and Model Geometry Effects on the Structure of Crossing Shock-Wave/Turbulent Boundary-Layer Interactions," AIAA Paper 93-0780, Jan. 1993.
- Garrison, T. J., and Settles, G. S., "Flowfield Visualization of Crossing Shock-Wave/Boundary Layer Interactions," AIAA Paper 92-0750, Jan. 1992.
- Smits, A.J. and Muck, K.C., "Experimental Study of Three Shock Wave/Turbulent Boundary Layer Interactions," *Journal of Fluid Mechanics*, Vol. 182, Sept. 1987, pp. 291-314.
- Zheltovodov, A.A., Zaylichny, E.G., Trofimov, V.M. and Yakovlev, V.N., "Investigation of Heat Transfer and Turbulence in Supersonic Separation," Russian ITPM Preprint 22-87, 1987.
- 26) Kim, K-S, Lee, Y., Alvi, F. S., and Settles, G. S., "Skin-Friction Measurements and Computational Comparison of Swept Shock/Boundary-Layer Interactions," *ALAA Journal*, Vol. 29, October 1991, pp. 1643-1650.
- 27) Garrison, T. J., private communication, 1992.
- 28) Settles, G.S., Gilbert, R.B. and Bogdonoff, S.M., "Data Compilation For Shock Wave/Turbulent Boundary Layer Interaction Experiments On Two-Dimensional Compression Corners," *Princeton University Report 1489-MAE*, Princeton Univ., 1980.

- 29) Fernholz, H.H., Finley, P.J., Dussauge, J.P. and Smits, A.J., "A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers," AGARDograph 315, 1989.
- 30) Settles, G. S., Fitzpatrick, T. J. and Bogdonoff, S. M., "Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow," AIAA Journal, Vol. 17, No. 6, June 1979, pp. 579.
- 31) Settles, G. S., Vas, I. E. and Bogdonoff, S. M., "Details of a Shock-Separated Turbulent Boundary Layer at a Compression Corner," *AIAA Journal*, Vol. 14, No. 12, December 1976, pp. 1709-1715.
- 32) Settles, G. S., "An Experimental Study of Compressible Turbulent Boundary Layer Separation at High Reynolds Numbers," Ph.D. Dissertation, Aerospace and Mechanical Sciences Dept., Princeton University, Sept. 1975.
- 33) Horstman, C. C., Settles, G. S., Vas, I. E., Bogdonoff S. M., Hung, C. M., "Reynolds Number Effects on Shock-Wave Turbulent Boundary-Layer Interactions," AIAA Journal, Vol. 15, August 1977, pp. 1152-1158.
- 34) Horstman, C. C., private communication, April 26, 1993.
- Morrison, J. H., Gatski, T. B., Sommer, T, P., Zhang, H. S., and So, R. M. C., "Evaluation of Near-Wall Turbulent Closure Model in Predicting Compressible Ramp Flows," Paper presented at the International Conference on Near-Wall Turbulent Flows, Tempe, AZ, March 15-17, 1993.

Appendix: Data Tabulation

There follows a tabulation of pertinent data from the new and corrected datasets which make up the hypersonic shock/boundary-layer interaction database. For each dataset, a brief discussion of the data is given for the benefit of users. However, users are strongly encouraged to consult the original references for more detail on what was measured and how it was accomplished. Similarly, no attempt has been made to tabulate all available data from each of these studies, but rather only those data most pertinent to the issues of turbulence modeling and code validation. In several cases, additional data may be had from the original publications. Moreover, of the data selected for inclusion, only initial profiles and samples are printed in this report, since brevity is required and paper tabulations are no longer of much use when machine-readable data are readily available. A 3.5" double-sided high-density diskette is also provided in original copies of this report. This disk contains the complete data-tables of this Appendix in machine-readable ASCII files, formatted for MS-DOS computers. Individual ASCII files are given for each of the datasets, with filenames keyed to first authors as follows:

New Datasets:
GARRISON.DAT
HSU.DAT
KUNTZ.DAT
KUSSOY3.DAT (single-fin)
KUSSOY4.DAT (crossing-shocks)
LEE.DAT
RODI.DAT

Corrected Datasets: SETTLES2.DAT

Ref.: 15-17

Author: Garrison and Settles

Geometry: Crossing Oblique Shock Waves

Mach number: 3 and 4

Data: p_{wall} , c_f , flowfield pitot surveys

The experiments were carried out using a double-fin test geometry mounted on a flat plate in the supersonic wind tunnel facility of the Penn State Gas Dynamics Laboratory. The flat-plate boundary-layers at Mach 3 and 4 are the same as those previously documented in Ref. 1(KIM.DAT). These are equilibrium turbulent boundary-layers developing naturally on a flat-plate at high Reynolds number, and are essentially adiabatic.

Opposing fins produced oblique shocks of opposite families, which intersected along the centerline of the flat plate. All test geometries were symmetric about this centerline. Fin angles-of-attack of 7x7, 9x9, 11x11, and 13x13 degrees were tested at Mach 3 and 4. A 15x15 degree case was also tested at Mach 4.

All data are described by a right-handed Cartesian x,y,z coordinate system. The origin of coordinates is on the centerline of the flat plate at the location of the fin leading-edges, ie 21.3 cm downstream of the flat-plate leading-edge. The x and z coordinates lie in the plane of the flat plate when y = 0, and in planes parallel to but above it for y > 0. The z coordinate is positive in the downstream direction, while the x coordinate is positive to the right of the plate centerline when viewed from the downstream direction. The z and x-locations of points within a given interaction are normalized by a reference "incoming" boundary-layer thickness, which is taken as $\delta_0 = 3.5$ mm for all test conditions.

The data file GARRISON.DAT contains tabulations of measured wall static pressures, skin friction distributions, and a single pitot-survey plane in these interactions. The wall static pressures were measured only on the centerlines of the symmetric interactions studied. Skin friction data, obtained by way of a laser-based technique (Ref. 17) were measured both on the centerline and on certain spanwise "cuts" at specific streamwise locations denoted by z/δ_0 values cited in the data file. The flowfield pitot survey data were obtained in a single x-y plane located at $z/\delta_0 = 32.33$ in the Mach 4, 15x15 deg interaction. While the flowfield features in this plane are discussed in Refs. 15, 22, and 23, the procedure of these flowfield surveys has not yet been described elsewhere in print. Interested readers should consult Ref. 16 when it becomes available.

Comparison Com		1.0279 1.0 1.0279 1.0 1.0279 1.0 1.0279 1.0 1.0279 1.0 1.2505 1.1 1.2505 1.1 2.0228 1.1 2.0269 1.2 2.0237 2.1 2.0279 2.1	9.27 9.27
10 10 10 10 10 10 10 10		1.10299 1.10 1.11263 1.10 1.15625 1.11 1.5625 1.11 1.5625 1.11 2.0228 1.12 2.0268 1.13 2.0268 2.11 2.0268 2.11 2.0268 2.11 2.0268 2.11 2.0268 2.2 2.0268 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Color Colo		1.1.25.7 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Color Colo		1.5575 11.1 1.5875 11.2 1.6828 11.5 1.6838 11.5 1.6838	25
State Stat		1.5056 1.1. 1.1. 1.5056 1.1. 1.5056 1.1. 1.5056 1.1. 1.5056 1.1. 1.5056 1.1. 1.1. 1.5056 1	88 88 88 88 88 88 88 88 88 88 88 88 88
17.00 17.0		1.74965 1.1.7 1.74965 1.1.7 1.74965 1.1.7 1.74965 1.1.6 2.74964 1.1.9 2.74964 2.1.9 2.74964 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.74966 2.1.9 2.7496 2.1.9 2.74966 2.1.9 2.7496 2.1	2 8 8 9 9 8 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 9 9 9 8 9
State Compared C		1. 87.88 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	85.5 118 88 88 88 88 88 88 88 88 88 88 88 88
### STATE OF CONTINUES IN L.L. LOCATION ### STATE OF CONTINUES OF CONTINUES IN L.L. LOCATION ### STATE OF CONTINUES OF CONTI		1, 6882 1, 688	887 118 118 118 118 118 118 118 118 118
SECRETARY AND CONTRICTORS AT L.L. (CONTROL AND STATE OF		2. 0.023 115. 2. 0.023 115. 2. 0.023 115. 2. 0.023 116. 2. 0.024 116. 2. 0.025 2. 2. 0.027	909 805 811 812 814 817 817 817 817 817 817 817 817 817 817
10 10 10 10 10 10 10 10		2. 1465 116 22 1465 116 24 146 25 1465 118 25 1465 119 25 146 26 26 26 26 26 26 26 26 26 26 26 26 26	600 112 121 121 132 133 134 144 154 155 157 158 158 158 158 158 158 158 158
INTERFERENCE CONDITION DESCRIPTION 2,779, 1797, 2,789,		2.3665 118 2.5662 210 2.5662 210 2.7666 221 2.7666 221 2.7666 221 2.7676 221 2.7677 221 2.8237 221 2.8237 221 2.8237 221 2.8237 221 2.8237 221 2.8237 222 2.8237 222 2.8238 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 222 2.8258 223	883 118 127 127 128 128 128 128 128 128 138 148 148 148 148 148 148 148 148 148 14
Color Colo		2.696. 118 2.658. 1.9 2.658. 1.9 2.658. 1.9 2.706. 2.1 2.706. 2.1 2.837. 2.1 2.837. 2.2 2.837. 2.2 2.837. 2.2 2.837. 2.2 2.837. 2.2 2.837. 2.2 2.837. 2.2 2.938. 2.1 2.938. 2.4	118 4.72 4.72 6.62 6.62 6.62 6.62 6.62 6.63 6
		2.5828 1.5 2.76621 2.0 2.76621 2.0 2.76621 2.0 2.76621 2.0 2.7924 2.1 2.8837 2.2 3.0005 2.4 3.0005	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RESTRICT PRESSET 2.500 5.100 5		2.6621 2.7666 2.17666	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
State Stat		2.7606 2.1706 2.	6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03
PLOTE DESIGNATION TO PRESENTE PLOTE DESIGNATION TO PRESENTE		2.7924 2.7 2.8237 2.1 2.9237 2.1 2.9237 2.1 2.9237 2.2 2.9237 2.2 2.9236 2.3 3.365 2.5 3.365 2.5	66 66 66 66 66 66 66 66 66 66 66 66 66
Final Date Fin		2. 6274 2. 1. 2. 6287 2. 2. 6287 2. 2. 6287 2. 2. 6287 2. 2. 6287 2. 2. 6287 2. 2. 6287 2. 628	667 117 118 118 118 118 118 118 118 118 11
RESTREAM STANDING PROFESTIVE 1,000 1,0		2. 8657 2. 1 2. 8657 2. 2 2. 9237 2. 2 3. 1098 2. 3 3. 1098 2. 3 3. 1098 2. 3 3. 1098 2. 4 3. 1098 2. 4 2. 1098 2. 4 2. 1098 2. 4 2. 1098 2. 4 1. 10	66 667 667 667 667 667 667 667 667 667
Market Complete Name	ES (= 9.4 cm) MG ON TUNNEL CENTERLINE NG ON FLAT PLATE TING AT FIN LEADING REAN OF PLATE L.E) TITONS S AT X=178 am FROM FLAT-PLATE	2. 8857 2. 2. 2. 8857 2. 2. 3. 0938 2. 3. 1133 2. 3. 11	87 100 100 100 100 100 100 100 100 100 10
Michaelt and Telegraphic Good Living Controlled Control	ES (= 9.4 cm) MG ON TUNNEL CENTERLINE NG ON FLAT PLATE TING AT FIN LEADING REAM OF PLATE L.E.) ITTONS S AT X=178 am FROM FLAT-PLATE	2. 9237 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	165 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MAIL REFERENCE (REGINALING OFFICE C. C.) MAIL REPORT (MAIL C. C.) MAIL REFERENCE (REGINALING OFFICE C. C.) MAIL REFERENCE (REGINALING OFFICE C. C.) MAIL REPORT (MAIL C. C.) MAIL REFERENCE (REGINALING OFFICE C. C.) MAIL REPORT (MAIL D. C.) MAIL MAIL PRESENTE (MAIL D. C.) MAIL MAIL D.	ES (= 9.4 cm) NG ON TUNNEL CENTERLINE TING ON FLAT PLATE TING AT FIX LEADING REAM OF PLATE L.E.) TIONS S AT X=178 am FROM FLAT-PLATE	3, 0998 2, 3, 1133 2, 2, 3, 1133 2, 2, 3, 1008 2, 3, 1008 2, 3, 1008 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	117 6867 7874 7874 7874 7875 7876 7876 7876 7877 7877 7877 7877
Comparison Com	KG ON TUNNEL CENTERLINE NG ON TUNNEL CENTERLINE NG ON FLAT PLATE REAM OF PLATE L.E.) TITIONS AT X=178 arm FROM FLAT-PLATE	3.1133 2.3 3.0065 2.4 3.0081 2.5 3.557 2.5 3.457 2.5 3.457 2.5 3.457 2.5 3.457 2.5 3.457 2.5 3.053 2.5 2.5945 2.6 3.053 2.6 3.055 3.6 3.055 3	667 874 875 877 877 878 878 878 878 878 878 878
Comparison of	KE GO 4 CM) KE GO 4 CM) KE GO 1 TUNNEL CENTERLINE KG ON TUNNEL CENTERLINE TING AT FIN LEADING REAM OF PLATE L.E.) TITONS S AT X=178 am FROM FLAT-PLATE	3.0065 2.4 3.0831 2.4 3.5083 2.5 3.4435 2.5 3.4435 2.5 2.5545 2.1 1.9645 2.2 1.1406 2.2	335 94 95 95 95 96 96 96 96 97 97 97 97 98 98 98 98 98 98 98 98 98 98 98 98 98
### MATERIAL CONDUINTS CALLINATING CALLINA	MG ON FLAT PLATE MG ON FLAT PLATE MING AT FIN LEADING REAN OF PLATE L.E.) MING AT FIN LEADING MEN SEAN OF PLATE MING AT FIND AT FROM FLAT-PLATE	3.0831 2.4 3.5857 2.5 3.587 2.5 3.435 2.5 3.0653 2.6 2.0556 2.8 1.9463 2.7 1.1463 2.7 1.1512 2.6 1.1512 2.6 1.1512 2.6 1.1512 2.6	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.
Statical Companie Origination of Full Plainie Original Engineering Ori	NG ON FLAT PLATE TING AT FIN LEADING REAM OF PLATE L.E.) ITTOMS S. AT X=178 am FROM FLAT-PLATE	3.5857 2.53 3.5857 2.53 3.4557 2.53 3.0653 2.6 2.5873 2.7 2.5873 2.7 2.5873 2.7 2.5873 2.7 1.9463 2.7 1.1463 2.5 1.1463 2.5 1.1168 2.5 1.1168 2.5 1.1168 2.5 1.1168 2.5 1.1168 2.5	25. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27
The same section will conclude to Fulfie Lebins 27,000 150.2 1	TING AT FIN LEADING REAN OF PLATE L.E) TTIONS AT X=178 am FROM FLAT-PLATE	3.367 2.53 3.4355 2.53 2.8758 2.7 2.8758 2.7 2.0365 2.7 2.0365 2.7 1.905 2.8 1.403 2.5 1.3134 2.5 1.3134 2.5 1.3134 2.5 1.3134 2.5 1.3134 2.5	27. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
Market M	TIONS S AT X=178 am FROM FLAT-PLATE	3,4325 2,53 2,873 2,52 2,875 2,23 2,5945 2,13 1,9465 2,73 1,1463 2,73 1,1146 2,24 1,1146 2,24 1,146	7.7 2.7 2.7 2.7 2.7 2.7 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3
10 And PRESSTREAM FLOA COMPITIONS 20,000 1, 1,100 2, 2,001 2, 2,003 2,003 2,0	1710MS S AT X=178 am FROM FLAT-PLATE	3.0653 2.6 2.8738 2.7 2.5945 2.7 2.0355 2.8 1.463 2.4 1.462 2.8 1.463 2.4 1.410 2.4 1.410 9.4 deg	259 256 257 257 257 257 257 257 257 257 257 257
10 MP FREESTREAM FLOW COMPITIONS 1,515,2 2,1072 2,5045 2,5016 2		2.8788 2.7 2.8545 2.8 2.0365 2.8 2.0365 2.8 1.9042 2.8 1.463 2.5 1.3134 2.5 1	24 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -
State 1,550 1,55	1710MS S AT X=178 am FROM FLAT-PLATE	2.5945 2.8 2.0368 2.7 2.0368 2.8 1.9042 2.8 1.463 2.5 1.3134 2.4 1.3134 2.4 1.3114 2.4	4 K
State Stat	S AT X=178 am FROM FLAT-PLATE	1.9485 2.7 2.0365 2.8 2.0365 2.8 1.9042 2.8 1.463 2.4 1.3134 2.4 1.3134 2.4 1.10g 9x9 deg	7 K
100 1577 1577 100 1577 1577	S AT X=178 am FROM FLAT-PLATE	2.0365 2.8 1.9042 2.8 1.3134 2.4 1.3134 2.4 1.3149 9x9 deg Ppinf pw/pinf	25, 25, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28
75.00 to 67.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2	S AT X=178 am FROM FLAT-PLATE	1.502 2.8 1.5134 2.4 1.5134 2.4 8UIIONS AT IM 1.5109 989 degree	9 K.
95 K 4 49 5 55 K 4 49 5 5 K 4 49 5 K 4 49 5 5 K 4 49 5 5 K 4 49 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 4 4 5 K 4 5 K 4 4	S AT X=178 am FROM FLAT-PLATE	1.463 2.53 1.3134 2.4 1.3134 2.4 19UTIONS AT MA 111dg 9x9 deg	91.9 9 K.
# 6.250 ft. coughly ediabatic) # 6.250 ft. coughly ediabatic) # 7.250 ft. coughly ediabatic) # 8.250 ft. coughly ediabatic) # 8.250 ft. coughly ediabatic) # 8.250 ft. coughly ediabatic) # 9.250 ft. coughly ediapatic) # 9.250 ft. coughly ediapatic)	S AT X=178 am FROM FLAT-PLATE	1.3134 2.4 BUTIONS AT MA	9 K
# 1.06 (roughly adiabatic) CEMTERLINE WALL PRESSURE DISRIBATIONS AT MACH 4 15.00 (by law and by law and by law and by law and adiabatic) S. BE-07 **A. BE-07	S AT X=178 am FROM FLAT-PLATE	BUTIONS AT MA	**************************************
Section February Section Sec	S AT X=178 am FROM FLAT-PLATE	BUTIONS AT MA	
State Stat	S AT X=178 am FROM FLAT-PLATE	### 19 A D D D D D D D D D D D D D D D D D D	7 K
15x1549 15x1	S AT X=178 am FROM FLAT-PLATE	cildg 9x9 deg	******
500 kPe	15,1549 18x1349 2/80 ps/pinf ps/pinf 8,9999 1,022 1,0521 10,269 0,965 1,034 11,539 0,9395 1,034 11,539 0,9395 1,034 11,539 0,9395 1,035 11,539 0,9395 1,035 11,539 0,9395 1,035 11,539 0,9395 1,035 11,539 0,9395 1,035 11,539 0,9395 1,035 11,539 0,9395 1,035 11,539 0,9395 1,035 12,349 2,1077 1,1265		
2760 parkpart 275 (1017 1017 1017 1017 1017 1017 1017 101	2,60 pw/pint p	:	7x7 deg
## 1.06 (roughly adiabatic) ## 1.07 (roughly	8.9989 1.0222 1.0521 10.269 0.965 1.0342 11.539 0.9395 1.037 13.353 1.0421 1.0425 14.079 1.294 1.0425 15.349 2.1077 1.1262		pw/pint
6 b BE+07 11.559 0.9665 1.0342 1.0223 0.9968 4 = 1.06 (roughly adiabatic) 11.559 0.9665 1.0342 1.0223 0.9961 11.559 0.9665 1.0425 1.0224 0.9901 11.559 0.965 1.0425 1.0224 0.9901 12.540 1.042 1.0425 1.0224 0.9964 12.641 1.0425 1.0224 0.9964 12.642 1.0425 1.0425 1.0224 0.9964 12.642 1.0425 1.0425 1.0224 0.9964 12.643 1.0421 1.0425 1.0224 0.9964 12.643 1.0421 1.0425 1.0224 0.9964 12.643 1.0421 1.0425 1.0224 0.9964 12.643 1.0421 1.0131 0.9964 12.643 1.0421 1.0131 0.9964 12.643 1.0421 1.0131 0.9964 12.643 1.0421 1.0131 0.9964 12.643 1.0421 1.0131 0.9964 12.643 1.0421 1.0131 0.9964 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0131 12.643 1.0421 1.0031 12.644 1.0131 12.644 1.0131 12.645 1.0421 1.0031 12.645 1.0421 1.0131 12.645 1.0421 1.0131 12.645 1.0421 1.0131 12.645 1.0421 1.0131 12.645 1.0421 1.0131 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645 1.0421 1.0421 12.645	10.289 0.9655 1.0342 11.539 0.9795 1.032 13.533 1.0421 1.0425 14.079 1.294 1.0385 15.349 2.1077 1.1262		1 072.8
### 1.06 (roughly adiabatic) ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT MACH 3 ### BOUNDARY LAYER PARAMETERS AT X=188 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=188 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=188 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=188 mm FROM FLAT-PLATE ### BOUNDARY LAYER PARAMETERS AT X=188 mm FROM FLAT-PLATE PARAMETERS AT X=18	11.539 0.9395 1.032 13.533 1.0421 1.0425 14.079 1.294 1.0385 14.079 1.294 1.0385		070
13.353 1.0421 1.0425 1.0226 1.0031 15.353 1.0421 1.0425 1.0221 0.09464 15.300 1.294 1.0355 1.0231 0.09464 15.300 1.294 1.0355 1.0231 0.09464 15.300 1.294 1.0355 1.0231 0.09464 15.300 1.294 1.0355 1.0231 0.09464 15.300 1.294 1.0422 1.0351 0.09464 15.300 1.294 1.0352 1.1244 1.0193 16.619 2.4778 1.6252 1.1244 1.0193 17.03 2.6248 2.478 1.6252 1.1244 1.0193 18.8 2.0.277 2.478 2.413 1.0294 1.3794 18.8 2.0.277 2.413 1.0294 1.3794 18.8 2.0.178 2.413 1.0034 1.3794 18.8 2.0.178 2.413 1.0034 1.3794 18.8 2.0.178 2.413 1.0034 1.3794 18.8 2.0.178 2.413 1.0034 1.3794 18.8 2.0.178 2.413 1.0034 1.3794 18.8 2.0.178 2.413 2.413 1.0034 1.3794 18.8 2.0.178 2.413 2.413 18.8 2.0.178 2.413 2.413 18.8 2.0.178 2.413 2.413 18.8 2.0.178 2.413 2.413 18.8 2.0.178 2.413 2.413 18.8 2.0.178 2.413 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.413 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178 18.8 2.0.178 2.0.178	13.353 1.0421 1.0425 13.353 1.0421 1.0425 14.079 1.294 1.0385 15.349 2.1077 1.1262		1,0147
14.070 1.294 1.035 1.0213 0.9964	16.079 1.284 1.0385 MDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE 15.349 2.1077 1.1262		1.0147
15 16 10 10 10 10 10 10 10	MDARY LAYER PARAMETERS AT X=178 nm FROM FLAT-PLATE 15.349 2.1077 1.1262		1.0076
16.619 2.4778 1.622 1.1204 1.0103 16.619 2.4778 1.622 1.1204 1.0103 16.619 2.4778 1.622 1.1204 1.0103 16.619 2.4778 2.6158 2.4134 1.7204 1.418 16.619 2.4778 2.6158 2.4134 1.7204 1.1418 16.619 2.4778 2.6158 2.4134 1.2009 16.619 2.4778 2.6158 1.7204 1.1418 16.619 2.4778 2.6158 1.7204 1.1418 16.619 2.4778 2.6158 1.2009 16.610 2.4778 2.6158 1.2009 16.610 2.4778 2.6158 1.2009 16.610 2.4778 2.6158 1.2009 16.610 2.4778 2.6158 1.2009 16.610 2.4778 2.6178 1.2009 16.610 2.4778 2.6178 1.2009 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6178 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 2.6478 16.610 2.4778 16.610 2.4778 2.6478 16.610 2.4778 16.610			1.0341
3 (actual freestream Mach number was 2.91 for this survey) 3 (actual freestream Mach number was 2.91 for this survey) 3 (actual freestream Mach number was 2.91 for this survey) 4 (actual freestream Mach number was 3.83 for this survey) 5 (2773 (2.873 (2.842 1.3798 1.3	16.619 2.4778 1.6252		0.98821
3 (actual freestream Mach number was 2.91 for this survey) 20,629 2,977 2,588 2,4134 1,7294 1,1418 1,180 2,160 3,177 2,581 1,9245 1,260 3,177 2,6111 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,611 2,029 1,177 2,612 1,029 2,029 1,177 2,612 1,029 2,029 1,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029 1,029 2,029	17.889 2.6778 2.0441		1.0%
21.669 3.1775 2.5618 1.2024 1.3708 2.1009 2.1009 3.1775 2.2618 1.2024 1.3708 2.1009 3.1775 2.2618 1.2024 1.3708 2.1009 3.1775 2.100 3.1775 2.2618 1.2024 1.3708 2.1009 3.1775 2.2618 2.2024 1.3708 2.2034 1.3708 2.2	19,703 2,8588 2,4136		1.07%
21.699 3.1775 2.6111 2.0294 1.3798 24.239 3.7025 2.2436 1.6749 24.239 3.7025 2.2436 1.6749 24.239 3.6624 2.8572 2.3457 1.8006 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6806 26.779 4.9227 3.2875 2.3477 1.6702 2.2213 26.779 4.9227 3.2875 2.3477 2.6778 26.739 6.4777 3.4776 3.7718 2.7716 2.7718 26.739 6.4777 3.4776 3.7718 2.7718 26.739 8.7718 2.7718 2.7718 2.7718 26.739 8.7718 2.7718 2.7718 27.739 9.0073 6.2903 3.7718 2.7718 27.740 9.2809 3.7718 2.7718 2.7718 27.740 9.2809 3.7718 3.7717 3.4718 27.750 9.2805 1.3717 3.4717 3.4718 27.750 9.2805 1.3718 3.7717 3.4718 3.7718 3.7718 3.7718 3.7718 3.7718 27.750 9.2805 1.3718 3.7718	(actual freestream mach number was 2.91 for this survey) 20.429 2.9773 2.5618		1.0901
24, 296 3, 105, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	21.699 3.1775 2.6111		1.1642
26,779 26,729 26,729 26,729 1,000	22.969 3.7023 2.8273		1.2685
4. (actual freestream Mach number was 3.88 for this survey) 28.049 5.7754 5.7716 2.0213 29.319 6.6439 4.2784 2.8324 2.1385 29.319 6.6439 4.2784 2.0213 29.319 6.6439 4.2784 2.8324 2.1385 29.319 6.6439 4.2784 2.8324 2.1385 29.310 6.6439 4.2784 2.8324 2.1385 29.310 6.6439 4.2784 2.8324 2.1385 29.310 6.6439 4.2784 2.8324 2.1385 29.310 6.6439 6.2784 2.8324 2.1385 29.310 6.6439 6.2784 2.8324 2.1385 29.310 6.6439 6.2784 2.2784 2.1385 29.310 6.6439 6.2784 2.2784 2.1385 29.310 6.6439 6.2784 2.2784 2.1385 29.310 6.6439 6.2784 2.2784 2.1385 29.310 6.6439 6.2784 2.2784 2.1385 29.410 6.6439 6.2784 2.2845 2.1385 29.479 13.412 7.2784 2.2895 20.310 6.6439 6.2845 2.2849 3.6986 27.8111649 9x9 deg 7x7 deg 6.2849 2.2896 2.3898 6.8485 2.8492 2.9345 27.810 6.2849 2.28988 2.2898 2.2898 2.2898 2.2898 2.2898 2.2898 2.2898 2.2898 2.28988 2.2898 2.2898 2.2898 2.2898 2.2898 2.2898 2.2898 2.2898 2.28988 2.2898 2.2	75(8:7, 750): 65(7:7)		7.657
4 (actual freestream Mach number was 3.88 for this survey) 4 (actual freestream Mach number was 3.88 for this survey) 5 (actual freestream Mach number was 3.88 for this survey) 8 (actual freestream Mach number was 3.88 for this survey) 9 (actual freestream Mach number was 3.88 for this survey) 9 (actual freestream Mach number was 3.88 for this survey) 9 (actual freestream Mach number was 3.88 for this survey) 9 (actual freestream Mach actual freest	1907 C 1774 P 6/1/197		. 7
4 (metual freestream Mach number was 3.88 for this survey) 30.589 7.173 4.7166 3.0702 2.2943 3.182 2.87 mm	78/20 7 52/87		1 7443
12.403 8.3968 5.5558 3.5397 2.4402 13.102 8.0950 mm 13.102 8.0950 mm 13.102 8.0950 mm 14.102 0.0950 mm 15.103 8.3968 5.5558 3.5397 2.4402 15.103 8.3968 6.2968 4.0356 2.3166 15.104 8.0073 6.2968 4.0356 2.3166 15.104 8.0073 6.2968 4.3646 2.6078 15.104 8.0073 6.2968 4.3646 2.6078 15.104 8.0073 6.2968 4.3646 2.0078 15.104 8.0073 6.2968 4.3646 2.0078 15.104 8.0073 6.2968 1.0078 15.104 8.0073 6.2968 1.3646 15.105 8.0073 6.2968 1.3646 15.105 8.0073 6.2968 1.3646 15.105 8.0073 6.2968 1.3656 15.106 8.0073 6.2968 1.9078 15.105 8.0078 15.105 8.0078 15.10	(actual freestream Mach number was 3.88 for this survey) 30.580 7.1723 4.7165		1.0303
## = 0.950 mm ## = 0.950 mm ## = 0.128 mm ## = 0	8555 5 8965 8 507 75		1.9557
14.399 9.0073 6.2965 4.0336 2.5166 14.399 9.0073 6.2965 4.0336 2.5166 14.399 9.0073 6.2963 4.0336 2.5166 14.475 9.207 13.412 7.327 5.299 1.023 14.475 9.208 1.327 5.299 1.023 14.475 9.208 1.327 5.299 1.023 14.475 9.208 1.327 5.299 1.023 14.475 9.208 1.326 5.5701 3.264 13.4169 9x9 deg 7x7 deg 7x7 deg 4.5459 4.1639 9.11 602 5.4409 1.055 14.475 9.208 1.326 5.2701 3.2694 14.475 9.208 5.359 11.602 5.4409 1.055 14.475 9.208 5.359 11.602 5.359 1.055 14.475 9.208 5.359 11.602 5.359 1.055 14.475 9.208 5.359 11.602 5.359 1.055 14.475 9.208 5.359 11.602 5.359 1.055 14.475 9.208 5.359 11.602 5.359	33.129 8.6098 5.7968		2.0409
15, 649 9, 2383 6, 7298 4, 3787 2, 607 2, 608 2, 2883 6, 7298 4, 3787 2, 607 2, 608 2, 2883 6, 7298 4, 3787 2, 607 2, 608 2, 2882 6, 2	34.399 9.0073 6.2965		2.028
36.395 10.721 6.8422 4.5646 2.6698 36.479 11.727 6.8422 4.5646 2.6698 40.749 8.6375 7.7677 5.6155 3.1161 41.475 9.2485 13.345 5.2701 3.2461 41.475 9.2485 13.345 5.2701 3.2461 43.289 5.3859 11.602 5.4409 3.2409 3.6952 45.889 11.11649 9x9 deg 7x7 deg 4.5894 4.1637 9.4111 5.817 3.6984 5x13deg 11x11deg 9x9 deg 7x7 deg 4.5894 4.1637 9.4111 5.817 3.6984 5x13deg 11x11deg 9x9 deg 7x7 deg 5x1049 3.6529 8.5409 3.6529 3.9345	35.669 9.2383 6.7298		2.0385
1.00 1.00	36,395 10,721 6.8432		2.2459
41.475 9.2465 13.345 5.2701 3.469 41.475 9.2465 13.345 5.2701 3.4695 3.1061 41.475 9.2465 13.345 5.2701 3.4695 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4409 3.4955 41.602 5.4913 5.6925 5.4935 5.4	39.479 13.412 7.3227		2.34%
41,475 9,2485 13,345 5,701 3,2841 1,349 2,4409 3,4952 44,559 4,1433 9,4111 5,817 3,4952 5,409 5,409 5,40	STREED LONS AT MACH 3 1.7677		5.4005
43.289 3.389 11.602 3.489 3.492 4.559 4.1633 9.4111 5.817 3.898 5.	525.81 13.55		2.4571
13x13deg 11x11deg 9x9 deg 7x7 deg 45.829 3.625 3.9345 DW/pint pw/pint pv/pint	5.5859 11.602		1700.2
pw/pint pw/pint pw/pinf pw/pin	11x11dea 040 dea 7x7 dea 4,1053 d		20.5
7,020 27/5 82/9/7	Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2136.2
	pm p		2.7945

0.3897	KKIN PRICTION DISTRIBITIONS FOR MACH 4, 15x15 DEGREE INTERACTION																			电电阻 电电电阻电阻 医乳毒素 医电压管 医牙髓 医甲状腺素				NOIE: THE EXCERPT	SHOWN HERE IS FOR	SPACE LIMITATIONS	PRECLUDE A COMPLETE	LISTING.							
5.4429 3.897	VOR 4, 15x15 DEGI	NO! LI	, , , , , , , , , , , , , , , , , , ,						8:	:	,	:						************		SPANNISE PLANE (L' LOCATED AT 2/80 ± 32,33	pt2/p0	2.388831E-01	2.599282E-01	2.548075E-01	2.744129E-01	2.922414E-01 2.90254E-01	2.919231E-01	2.742993E-01	2.915159E-01	2.921575E-01	2.891678E-01	2.746836E-01 2.869852E-01	3.033747E-01 2.963652E-01	3.0631716-01	3.075611E-01 2.924217E-01
0.3828 0.379 0.3744	SKIN FRICTION DISTRIBTIONS FOR MACH 4	CENTERLINE SKIN FRICTION DISTRIBUTION	03 ERROR+03	0.0564		0.1918	0.1845	0.3116	SPANNISE SKIN FRICTION DISTRIBUTION		03 ERROR+03		0.06028					************	FY DATA	OCATED AT 2/6	E ,	3.274900	4.295140	5.500980	7.297420	8.336280	10.370820	12,400280	13.413740	15.394940	17,330420	19,372580	21.531580	22.532340	25,490680
3.828	RICTION DISTR	LINE SKIN FRI	CF EE+03	- 0 - 0 - 5 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3		1.918		5.1.6	SPANNISE SKIN FRICTION	25.3	CF EE+03		2.368					*********	FLOWFIELD PITOT SURVEY DATA MACH 4, 15x15 DEGREE INTERACTION	E PLANE "L"	E×	15.270480	15.260320	15.252700	15.245080	15.24.7620	15.247620	15.245080	15.245080	15.24.2540	15.24.7620	15.250160	15.255240	15.24/620	15.24.7620
4.5357 5.4429 6.4661	SKIN	CENTER	09/2	12.417	23.73 23.73	27.38	34.638	78. CO	SPANUI	2/60 = 25.3	09/x	0	2.0973	3.9697	5.1598 X1.4	6.5314	7.2571		MACH 4	SPANNI															
25 25 27 27 27 27 27 27 27 27 27 27 27 27 27	8																																3 ERROR+03	0.1831	0.53478
4,1929 2,9251 4,2237 2,8757 4,4283 2,9868 3,8959 3,3574 4,5734 2,9917			ş:		: ;	:							:	:							· ·		:	:								60 = 37.0	60 CF EE+03	-	6286 4.573
4.8841 4.1704 3.0053 3.1682 3.0227	1.9605		N DISTRIBUTIONS	:	ERROR+03	:	0.1303	0,1043	0.0937	0.0762	0.0713		ERROR+03	0.1462	0.1407	0.05%	0.03452	0.13	0.1631	0.1883	DISTRIBUTIONS	9'05=09/Z E	,	EIORUR +U.S		0.122/ 0.1733	0.235	0.3005	0.4 0.234		_	7/2	· ×	-	- mi
2.0387 3.815 1.8894 3.1747 1.6542 2.2633 1.2176 2.3245 1.3379 2.5095		SKIN FRICTION DISTRIBUTIONS AT MACH	CENTERLINE SKIN FRICTION D	7X7 DEGREE INTERACTION	CF EE+03	1.4.1	. 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50	1.043	0.937	297.0	0.73	11x11 DEGREE INTERACTION	CF EE+03	1.462	707.1	0.594	0.336	5.0	1.831	1.883	SPANNISE SKIN FRICTION DISTRIBUTIONS	7X7 DEGREE INTERACTION & 2/60=40,6		Cr ee+us					7 × 6		11X11 DEGREE INTERACTION	29.8	CF EE+03 ERROR+03		2.966 0.2966
50.909 1 52.179 1 53.449 1		SKIN FRICT	CENTERLINE	7X7 DEGREE	2/60	11.611	18.869	26.126	20.75	37.011	44.269	11×11 DEGA	09/2	7.9829	11.611	18.869	22.272	× .	37.011	79.07	SPANNISE	7X7 DEGREE		X/60	0	2.7214	3.6286	6.35	7.2571		11x11 DEGR	2/60 * 29.8	:		2.7214 2.

Ref.: 12-13

Author: Hsu and Settles Geometry: 3-D Fin Mach number: 3, 4

Data: flowfield density maps

The experiments were carried out using a single sharp unswept fin mounted at angle-of-attack on a flat plate in the supersonic wind tunnel facility of the Penn State Gas Dynamics Laboratory. The flat-plate boundary-layers at Mach 3 and 4 are the same as those previously documented in Ref. 1 (KIM.DAT). These are equilibrium turbulent boundary-layers developing naturally on a flat plate at high Reynolds number, and are essentially adiabatic.

The swept, single-fin shock/boundary-layer interaction was studied by way of conical holographic interferometry, wherein the holographic test beam was focused at or near the virtual origin of the quasiconical swept interaction. The light rays then coincided with the rays of the interaction, rendering the interaction two-dimensional insofar as the quasiconical approximation is valid. Users of these data who are unfamiliar with this approach should first consult the cited references and Alvi and Settles, *ALAA Journal*, Vol. 30, Sept. 1992, pp. 2252-2258.

Holographic interferograms obtained as described above and in the cited references were reduced to provide flowfield density data, assuming that each interaction was a two-dimensional flow in the angular coordinates β and ϕ defined in the diagram below. β is the azimuthal coordinate measured from the freestream direction, and is positive in the direction illustrated. ϕ is the elevation coordinate measured from the plane of the flat plate, and is also positive in the direction illustrated. Both β and ϕ have vertices at the virtual conical origin (VCO) of the interaction, which is located on the flat plate ahead of the fin leading edge, along a line extrapolated from the inviscid shock angle, β_0 . The distance from the fin leading edge to the VCO for the three interactions studied here were: 48 ± 6 mm for the Mach 3, $\alpha = 10^{\circ}$ case, 33 ± 3 mm for the Mach 3, $\alpha = 16^{\circ}$ case, and 21 ± 3 mm for the Mach 4, $\alpha = 20^{\circ}$ case.

The data file HSU.DAT contains preliminary information and density data files for each of these 3 interactions. The extensive flowfield density data are given in columnar form, the number of β columns ranging from 18 to 36 and the number of ϕ rows ranging from 58 to 100, depending on the overall angular extent of the interaction in question. At each flowfield location defined by a β, ϕ pair, the measured static density is given along with its normalization by the freestream static density.

Density data from conical holographic interferogram of swept shock wave/turbulent B. L. interaction	Mach 4 Angle 20 degrees	Pern State Gas Dynamics Laboratory, March 1991	INCOMING BOLNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE LEADING EDGE	Mach 4 (actual freestream Mach number was 3 RR for shin services	Delta = 2.87 mm	Delta" = 0.950 mm	Thete = 0.128 mm	Cf = 0.001325	Re(theta) = 9082		Case: m4a20/m4a20	Beta Column Counts 36	5	Humber-	Angle of Attacka 20,00000	Fin L.E. from flat plate L.E., X= 10.00125 cm	Fin L.E. from side wall, Ya 2.460625 cm	VCO from fin leading edge= 17 mm (along the inviscid shock)	Freestream stagnation Temperature, * 294,8000 K	ire: 1.38584(Personnelle matter 6 700 not = 0.4841200 Kg/M-3	TW/TeM = 1.06 (roughly adiabatic)		Col.# Beta Phi Rho Rho/Rhoin/	13.244 0.485	13.238 0.485		13 222 0 485	13.216 0.485	13.211		13.200	13.195 0.485		0.485	13.178 0.465 1.00	13.173 0.485 1.00	13.167 0.485 T. O. C.	13.162 0.485 1.00	13.156 9.486 1.00	T 200.1 200.0 200.51	13.151 0.485 1.00 V	13.145 0.485 1.00 R	13.140 0.485 1.00 H	13.134 0.485 1.00 C	X 00.1 587.0 621.51	E
Density data from conical hotographic interferogram of swept shock wave/turbulent 8 . L. interaction	Mach 3.0 Angle 16.0 degrees	Pern State Gas Dynamics Laboratory, March 1991	INCOMING BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE LEADING EDGE	Mach 3 (actual freestream Mach number was 2.91 for this survey)	Delta = 3.02 mm	Delta* = 0.895 mm	Theta ≈ 0.184 mm	Cf = 0 001520	##(reca) = 7/3 	Case: m3a16/m3a16	Beta Column Count = 24	26	Freestream Mach Mumbera 2,950000	e of Attack# 16.000(:	Ř	e.= 289,000	re= 0.7565000	Freestream Density Rhoinf = 0.6238000 Kg/m ⁻³	Reynolds number 6.19£-07/m Turfau = 1 04 / resumbly adiabasis	M/IGH - I.OO (IOUGHIY) dulabalic)		14.523 0.623	14.520	14.517 0.623	14.514 0.623	1 44 111 14 508 0 423 1 100	14,505 0,623	14.502	14.499 0.623	1 46.111 14.496 0.623 1.00	14,493 0,623		1 46.111 14.487 0.623 1.00			[N	0.623 1.00	14.471	T. 268 0.623 1.90	W. 1.50.0 50.7.7.	14.465 0.023 1.00 R	0.623 1.00 E	14.159 0.623 1.80 CI	20.0 00.1.51 20.0 00.1.51	14,455 0.623 1.00 E.	[
Density data from conical holographic interferogram of swept shock wave/turbulent B. L. interaction	Mach 3.0 Fin Angle 10.1 degrees	Pern State Gas Dynamics Laboratory, March 1991	INCOMING BOUNDARY LAYER PARAMETERS AT X=178 mm FROM FLAT-PLATE LEADING EDGE	Mach 3 (actual freestream Mach number was 2.91 for this survey)	Delta ± 3.02 mm	Delta" = 0.895 mm	thete ≈ 0.184 πm	Cf = 0.001520	Xe(Checks) = 4/3		Case: m3a10/m3a10a	Beta Column Count= 18	Phi Row Count= 58	Freestream Mach Wumber≖ 2.95	Angle of Attack= 10.1	:	750 cm	296.300	ıre≖ 0.6892000	Freestream Density Rhoinf = 0.6189000 Kg/m/3	TW/Tau = 1.06 (rough) = adjabatic)	***************************************	Phi Tho	9.235 0.621	9,198 0.621	9,161 0.621	00.1 120.0 \$21.7 51.85 1	9.051 0.621	9.014 0.621	8,977 0.621	8.940 0.621	8.903 0.621	8.866 0.621	1 34,473 8.830 0,621 1.00	8.793 0.621 1.00	8.756 0.621 1.00	11 00.1 1.00 917.8	8.682 0.621 1.00	8.646 0.621	8,609 0.621 1.00 T	F 15.0 57.8	1.50 00.1 128.0 275.8 a	1. 00. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	H 129 0 6978	25.00 50.00	Z 10.1 529.0 7/2.8	

Author: Kuntz, D. W., et al

Geometry: 2-D Compression Corner

Mach Number: 3

Data: pwall, mean & fluctuating flowfield surveys (two channel

Laser Doppler Velocimetry)

Kuntz, D. W., Amatucci, V. A., and Addy, A. L., "An Experimental Study of the Shock Wave-Turbulent Boundary Layer Interaction," Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Miami Beach, Florida, November 17-22, 1985, and published in the International Symposium on Laser Anemometry, FED-Vol. 33, ed. A. Dybbs and P. A. Pfund, pp. 173-178.

Kuntz, D. W., Amatucci, V. A., and Addy, A. L., "Turbulent Boundary-Layer Properties Downstream of the Shock-Wave/Boundary-Layer Interaction," AIAA Journal, Vol. 25, No. 5, pp. 668-675, May, 1987.

Kuntz, D. W., "An Experimental Investigation of the Shock Wave-Turbulent Boundary Layer Interaction," Ph.D. Thesis, Dept. of Mechanical and Industrial Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, Illinois, 1985.

Experiments were conducted in a supersonic wind tunnel with a 10.2 x 10.2 cm test section. The models were two-dimensional compression corners which spanned the test section. Experiments were conducted with corner angles of 8, 12, 16, 20, and 24°.

The freestream Mach number, determined from surface pressure measurements, was approximately 2.94, and the stagnation pressure was maintained at approximately 483 kPa (70 psia) for all data points.

The primary measurement tool used in this investigation was a two-color laser Doppler velocimeter system. This system was used to obtain two-component mean velocity and turbulent property measurements in both the upstream and redeveloping downstream boundary layers within the flowfields. In addition to the LDV measurements, surface static pressure measurements, surface streak pattern measurements, and high-speed Schlieren photographs were also taken.

Measurements made in the wind tunnel in the absence of the compression corner models indicated that the undisturbed turbulent boundary layer had a thickness of 8.27 mm ($u_e = 0.99 \ u_{\infty}$), a displacement thickness of 3.11 mm and a momentum thickness of 0.57 mm.

The tabular data includes the surface static pressure distribution, the LDV data from a single traverse made upstream of the interaction, and the LDV data from the traverses made downstream of the interaction. Each traverse made downstream of the interaction includes data taken at a single point above the shock wave. The coordinate systems used are presented in the accompanying figure, and the definitions of the quantities listed are included in the accompanying table. The reader is referred to the AIAA Journal article cited above for a detailed discussion of the corrections applied to the LDV data, the errors associated with the LDV data, and estimates of the measurement accuracies.

Definitions of the Tabular LDV Data

Variable <u>Name</u>	<u>Description</u>	<u>Units</u>	<u>Definition</u>	Note
x	Longitudinal Position	mm	See Figure	
у	Vertical Position	mm	See Figure	
Vt	Total Velocity	m/s	$\sqrt{\left(\mathrm{V0}\right)^2 + \left(\mathrm{V1}\right)^2}$	1
theta	Flow Angle	deg	See Figure	
V 0	Average Velocity, Ch 0	m/s	See Figure	
V 1	Average Velocity, Ch 1	m/s	See Figure	
var0	Variance, Ch 0	m^2/s^2	$\frac{\sum_{n} (v0 - V0)^2}{n-1}$	2
var1	Variance, Ch 1	m^2/s^2	$\frac{\sum_{n} (v1 - V1)^2}{n-1}$	
s01	Reynolds Stress Term	m^2/s^2	(v0-V0)(v1-V1)	3
s001	Triple Product	m^3/s^3	$(v0 - V0)^{2}(v1 - V1)$	
s110	Triple Product	m^3/s^3	$(v0 - V0) (v1 - V1)^2$	
s000	Triple Product	m^3/s^3	$(v0-V0)^3$	
s111 -	Triple Product	m^3/s^3	$(v1-V1)^3$	
sk0	Skewness, Ch 0	-	$(s000)/(\sqrt{var0})^3$	

Variable <u>Name</u>	Description	<u>Units</u>	Definition	Note
sk1	Skewness, Ch 1	-	$(s111)/(\sqrt{var1})^3$	
ku0	Flatness, Ch 0	-	$\left[(s0000) / (\sqrt{var0})^4 \right] - 3.0$	4
ku1	Flatness, Ch 1	•	$\left[(s1111)/(\sqrt{var1})^4 \right] - 3.0$	

Notes:

- V denotes average velocity, v denotes instantaneous velocity. Upstream of the compression corner, Channel 0 is parallel to the tunnel floor and Channel 1 is perpendicular to the tunnel floor. Downstream of the compression corner, Channel 0 is parallel to the ramp surface, and Channel 1 is perpendicular to the ramp surface.
- The variance is the square of the standard deviation. The turbulence intensity would be found by taking the square root of the variance and dividing by the appropriate reference quantity (such as a reference velocity or a local velocity).
- The overbar denotes a simple average of the instantaneous measurements.
- The quantity s0000 was calculated in a similar manner as s000.

Coordinate System

Kuntz et al 2-D Compression Corner Data

20. Degree Compression Corner

H-inf = 2.94 p0 = 483 kPa t0 = 30 deg C delta-0 = 8.27 mm

Separation Location = -1.63*delta-0 Reattachment Location = 0.52*delta-0 (measured parallel to the ramp surface)

Mean Surface Static Pressure Distribution

	_	
×	(mm)	p/p-inf
7665-444-433332222222	11.12 12.12 13.96 13.18 13	1.000 0.992 0.986 0.996 0.998 0.995 0.992 0.999 1.009
3	1.03	3.392

NOTE: DUE TO SPACE LIMITATIONS, ONLY THE 20° DATA ARE TABULATED HERE. SEE DISKETTE FILE KUNTZ.DAT FOR COMPLETE TABULATIONS FOR ALL FIVE COMPRESSION CORNERS.

Laser Doppler Velocimeter Data

Basic	data.	x =	-20.0	ш.

y	Vt	theta	V O	V1	var0	warl	s 01
15.00 14.00 13.00 11.00 11.00 9.50 9.50 9.50 7.00 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6	629.83 631.15 631.18 630.37 628.92 625.96 624.47 623.16 625.96 624.47 623.16 669.41 669.41 669.41 670.55 670.73 67	90.02 89.97 90.02 99.98 89.98 90.02 90.02 90.02 90.03 89.99 90.03 89.90 90.25 90.25 90.228 90.28 90.33	629 . 83 631 . 15 631 . 18 630 . 37 628 . 92 622 . 96 624 . 47 623 . 16 616 . 24 616 . 24 601 . 19 588 . 01 555 . 81 544 . 78 528 . 84 528 . 84 530 . 37 54 . 78 555 . 81 54 . 78 54 . 78 55 . 78 56 . 78 57 58 . 78 58 . 78 5	-0.24 -0.31 -0.06 0.28 0.25 0.18 -0.55 0.14 -0.27 0.39 -0.4 -0.27 0.39 -2.46 -2.461 -3.283	123.974 82.210 83.261 82.380 91.020 144.848 139.109 179.863 224.517 268.612 279.304 330.528 501.894 501.894 592.226 798.860 991.395 945.322 1274.509 1275.189 1530.370 1616.059 1738.444 1962.803 1865.482	67. 884 74. 888 66. 507 63. 546 64. 016 64. 641 93. 333 89. 770 94. 184 109. 647 130. 878 148. 281 191. 253 191. 253 25. 213 235. 213 242. 184 278. 494 239. 195 252. 180 225. 1861	-22.16 1.03 -10.52 -10.52 -11.20 10.54 -0.82 -12.23 -18.25 -102.43 -67.81 -120.73 -159.33 -211.54 -219.28 -270.16 -228.87 -281.63 -292.991

Higher order moment data, x = -20.0 mm.

7	e001	#110	*00 0	5111	sk0	skl	iku0	kul
15.00	2.0235E+02	-9.3537E+01	-2.2967E+03	6.8859E+01	-1.6639E+00	1.2311E-01	5.4483E+00	4.2745E-01
14.00	-5.0543E+02	-3.6605E+02	-1.0831E+03	-2.9269E+02	-1.4531E+00	-4.5163E-01	8.0608E+00	2.1114E+00
13.00	1.5715E+02	-4.0176E+01	-1.1367E+03	7.3030E+01	-1.4961E+00	1.3465E-01	8.9324E+00	2.7036E-01
12.00	2.3253E+01	3.8892E+01	-7.4730E+02	4.5761E+01	-9.9945E-01	9.03368-02	5.9122E+00	3.4205E-01
11.00	-2.3082E+02	-2.2224E+01	-1.6080E+03	-3.4294E+01	-1.8517E+00	-6. 6954E- 02	9.2173E+00	4.2448E-01
10.00	1.7118E+02	-2.1015E+01	-3.3750E+03	-1.621 6E+ 01	-1.9360 2 +00	-3.1 2022 -02	7.7342E+00	1.9883E-01
9.50	-1.2724E+03	-1.6979E+03	-3.2023E+03	-1.4625E+03	-1.9518E+00	-1.6220E+00	7.4695E+00	1.2167E+01
9.00	-9.8147E+02	-9.494 8E +02	-4.40 <u>37E</u> +03	-8.4440 2 +02	-1. 8256E+0 0	-9. 9278E- 01	5.6903E+00	6.4585E+00
8.50	-8.2099E+02	~1.1794E+03	-6. 3828E +03	-6.7499E+02	-1.8973E+00	-7.3847 E -01	5.6451E+00	5.6307 2+0 0
8.00	-6.2678E+02	-1.7881E+03	-5.4699E+03	-6.2733E+02	-1.2425E+00	-5.4639 E -01	2.0279E+00	7.03658+00
7.50	-6.0594E+02	-2.3652E+03	-6.9227E+03	-1.57428+03	-1.4831E+00	-1.0764E+00	3.3418E+00	7.2633E+00
7.00	-1.5415E+03	-2.5645E+03	-7.9463E+03	-1.1649E+03	-1.32242+00	-7.7804E-01	2.9939E+00	5.5822E+00
6.50	1.6567E+03	-2.2157E+03	-1.2144E+04	-4.184CE+02	-1.0800E+00	-2.301 6E- 01	1.3151E+00	3.9066E+00

6.00 5.50 5.00 4.50 4.50 3.50 2.50 2.25 2.00	1.5719E+ 1.7549E+ 6.9012E+ -6.0964E+ 1.0611E+	03 -3.3 03 -2.5 02 -3.8 02 -2.1 03 -2.0 03 -2.0 03 -5.5 03 -5.5 03 -5.0 03 -1.0	699E+03 634E+03 210E+03 210E+03 747E+03 747E+03 313E+03 184E+01 679E+02 284E+02 341E+03	-1.1941F+01.6858E+01.5825E+01.5033E+01.9942E+01.3114E+01.3114E+01.3147E+01.1720E+0. 1.9196E+09.4191E+0.	-7.7005 -1.6705 -9.2446 -9.2446 -4.4923 -6.7744 -6.7744 -6.54881 -2.3046	E+02 -7.46 E+02 -5.56 E+02 -5.56 E+02 -4.16 E+02 -3.70 E+00 -2.19 E+00 -1.16 E+02 -1.85 E+02 -1.34 E+02 2.38	853E-01 163E-01 172E-01 23E-01 351E-01 155E-01 29E-01 77E-01 25E-02 00E-01	-1.0881E+00 -2.9114E-00 -6.0995E-02 -2.5627E-01 1.2359E-01 1.0049E-01 -1.4559E-03 2.5191E-03 -1.6351E-03 -1.6351E-03 -1.6351E-03 -1.41262E-02 -6.3098E-02 3.4524E-01	5.9426E-01 9.4438E-03	2.8110E+00 2.1575E+00 2.5076E+00 1.3522E+00 1.0624E+00 2.1297E+00 1.0117E+00 1.3350E+00 3.8375E-01
	data, x =				_					
y 25.00	Vt 626.64	theta 110.04	V0 588.69	V1 -214.76	var0 89.488	var1 83.653 1179.915	-40	01 . 6 7		
15.00 14.50 13.50 12.50 12.50 11.50 11.50 10.50 9.50 9.50 9.50 7.75 7.55 7.50	590. 13 584.99 579. 89 573. 35 562. 01 534. 57 457. 37 419. 16 389. 49 364. 97 331. 57 291. 62 231. 80 217. 11 207. 76 201. 24 179. 28	103.08 101.68 99.45 99.45 99.12 97.25 93.12 93.14 94.25 93.14 94.25 93.14 94.25 93.14 94.25 93.25 93.25 93.25	574.82 572.88 570.40 565.56 555.86 530.45 519.22 455.72 388.91 353.52 330.41 290.93 231.37 220.01 216.79 201.01	-133.58 -118.42 -104.46 -94.17 -82.87 -66.26 -38.88 -26.43 -21.33 -22.54 1 -27.71 1 -20.10 1 11.87 -11.87 1 -9.22	138.698 143.080 346.483 702.691 1556.716 4221.431 55794.362 9134.602 11522.217 2994.065 1880.019 2764.326 4428.071 1445.315 0872.860 0031.171 9021.621	1178 915 1220. 481 1524. 398 1821. 974 2070. 953 2317. 852 2657. 328 2521. 922 2475. 441 2797. 428 2594. 220 2700. 931 2801. 589 3098. 062 2955. 841 2963. 897	-41 -85 -357 -1091 -2846 -3574 -3922 -4310 -4163 -4254 -4959 -4142 -3868 -3653	. 62 . 62 . 28 . 51 . 51 . 62 . 88 . 57 . 59 . 59 . 57 . 70 . 82 . 82 . 83 . 81		
_	order mome s001				-111	ام	-A	al-1	L .A	L .1
25.00 15.00 14.50 14.00 13.50 13.50 12.50 12.50 11.50 10.50 9.50 8.50	\$8001 3.8656E+0 -2.6332E+0 -5.3550E+0 2.9727E+0 1.1299E+0 2.738E+0 2.2738E+0 2.1316E+0 2.0007E+0 1.5260E+0 1.5333E+0 3.7100E+0	22244555555555555555555555555555555555	43E+03 12E+03 12E+04 98E+04 21E+04 39E+04 36E+05 36E+04 43E+04 43E+04 49E+04 85E+04	-7. 6392E+02 -2. 3439E+03 -1. 9059E+03 -3. 3843E+04 -2. 0633E+05 -6. 1925E+05 -8. 1935E+05 -8. 1935E+05 -7. 9622E+05 -1. 0101E+06 -6. 2072E+05 -6. 9643E+05 -3. 7368E+05	111 1.40882 -1.3941E -1.7902E -5.9964E 1.1586.5404E 5.4736E 6.2758E 6.2758E 6.2758E 6.2758E 5.4406E 7.0847E 6.2538E 5.7436E 7.3656E 5.6335E	+02 -9.02 +04 -1.43 +03 -5.24 +04 -5.02 +02 -3.35 +03 -2.25 +03 -2.25 +03 -9.31 +04 -7.63 +04 -6.43 +04 -4.79 +04 -4.79	36E+00 74E+00 33E+00 37E+00 39E+00 33E-01 35E-01 77E-01 37E-01 37E-01	ak1 1.8413E-01 -3.4398E-01 -4.1986E-01 -1.0075E-01 1.4510E-01 6.9399E-03 4.9089E-02 4.9553E-02 4.9553E-02 4.97330E-01 4.7883E-01 4.7883E-01 4.9918E-01 3.0476E-01	2.9275E+00 7.8909E+00 4.1317E+00 4.7258E+01 1.4209E+01 5.4012E+00 3.0818E-01 -3.8348E-02 1.8900E-01 -3.0599E-01 -3.0599E-01 -6.8503E-01	kul 1.1219E-01 1.5652E-01 2.5555E-01 1.7621E+00 9.2126E-01 7.8636E-01 9.2037E-01 9.2037E-01 4.3730E-01 4.3730E-01 4.5722E-01 2.5830E-02
8.00 7.75 7.50 7.25 7.00	-1.2782E+C -1.8393E+C -1.9670E+C -1.9442E+C -1.6831E+C	5.87 5 6.72 5 7.38 5 7.28	510E+04 723E+04 295E+04 313E+04 365E+04	3.8752E+05 4.6173E+05 4.4413E+05 4.9625E+05 3.8035E+05	1.4066E -4.9383E -8.5046E -1.7954E -2.4550E	+03 4.07 +03 4.42 +04 5.79	68E-01 26E-01 06E-01 12E-01 11E-01	8.6208E-02 -2.8638E-02 -5.2922E-02 -1.1357E-01 -1.7886E-01	-4.7752E-01 -3.3945E-01 -2.1879E-01 -5.5344E-02 1.2360E-01	-1.7768E-01 -1.9150E-01 -2.7334E-01 -2.9367E-01 -2.1235E-01
У	Vt	theta	vo	v1	var0	varl	s (01		
30.00 17.50 16.50 16.50 15.50 15.50 14.50 14.50 12.50 12.00 11.50 11.50 10.50 9.75 9.50 8.75	625. 05 582. 26 579. 03 576. 45 571. 51 566. 68 560. 68 560. 04 526. 33 440. 56 410. 01 393. 82 378. 32 308. 70 244. 09 244. 09 244. 09 244. 09 244. 09	110.03 100.99 99.93 99.82 97.712 97.06 95.67 95.67 95.35 94.06 94.34 92.23 92.23 92.83 91.86 91.21 90.03	587. 25 571. 61 570. 36 568. 01 566. 25 562. 32 556. 18 523. 79 514. 08 499. 56 408. 99 392. 69 377. 34 408. 99 392. 69 377. 243. 96 222. 14 209. 10	-29.80 -27.20 -18.90 1:5.04 -13.00 -7.92 1:7.87	136.945 119.179 118.294 189.085 159.283 558.570 979.371 2660.936 5104.213 362.667 3047.953 7749.297 2239.213 3934.463 3131.26 402.291 402.291 810.626 332.898 9013.989 8949.622 4419.993	126. 725 1047. 679 1259. 272 1855. 030 1544. 215 1451. 326 1923. 282 22545. 022 2545. 022 2177. 956 2076. 666 2286. 416 22961. 173 3121. 934 3038. 149 2927. 825 3038. 149 2927. 825 2305. 558	-77 -84 -135 -130 -190 -775 -1432 -775 -1433 -2422 -1910 -3260 -2929 -3042 -4106 -406 -406 -3913 -3752 -3424 -2680	41 87 32 108 45 50 73 47 29 18 51 77 47 75 918 18		
-	order mome				-111	.1	-^	.3.9		11
30.00 17.50 17.50 16.50 16.50 15.50 14.50 12.50 11.50 11.50 11.50 11.50 11.50 9.75 9.25 9.25 9.25	\$001 1.9534E+0 -9.8253E+0 -7.4653E+0 -4.3219E+0 3.8359E+0 1.7635E+0 1.7635E+0 1.7734E+0 1.3043E+0 1.592ZE+0 1.592ZE+0 -1.1349E+0 -1.1349E+0 -1.433EE+0 -1.433EE+0 -1.4929E+0	3 -1.82 -7.960 -2.22 -2.23 -2.53 -2.868 -2.68 -7.483 -7.483 -8.617 -8.61	48E+03 90E+04 81E+04 81E+04 96E+05 02E+04 67E+04 34E+04 56E+04 66E+04	\$000 -2.5761E+03 -1.5069E+03 -3.5741E+01 -2.6020E+03 -5.7306E+04 -1.2359E+05 -3.9775E+05 -8.968E+05 -4.8785E+05 -8.752624E+05 -6.0359E+05 -6.0359E+05 -5.3339E+05 -2.9542E+05 -2.9542E+05 -2.9542E+05 -3.5037E+05 -4.0197E+05 -4.0197E+05 -4.0197E+05 -4.0197E+05 -4.0197E+05 -4.0197E+05 -4.0545E+05 -3.5037E+05	#111 1.7093E -3.10882 -4.4997E -7.1754E -2.7934E -4.117E -2.7934E -4.117E -2.6500E 7.3953E -1.2573E 3.2897E -1.2573E 3.2897E -1.4262E -1.4262E -1.7404E -3.9535E	104 2.777 104 -1.000 104 -4.340 105 -4.340 106 -4.340 107 -2.867 108 -2.453 109 -6.339 104 -6.339 104 -6.797 104 -7.194 104 -4.446 104 -2.426 104 -2.426 104 -2.426 104 -2.426 104 -2.426	42E+00 12E+00 12E+00 19E-02 11E+00 19E+00 18E+00 14E+00 16E-01 16E-01 16E-01 16E-01 16E-01 16E-01 16E-01 16E-01 16E-01 16E-01	sk1 1.1982E+00 -9.1674E-01 -1.0065E+00 -8.9809E-01 -1.1066E+00 -5.0522E-01 -4.8748E-01 -2.9410E-01 3.9023E-01 3.4181E-01 4.9427E-01 5.3215E-01 5.3215E-01 1.9988E-01 -9.0025E-01 -9.0025E-01 -3.5712E-01	8xu0 6.0317E+00 4.8702E+00 2.8440E+00 5.3332E+00 2.8211E+00 2.9728E+01 2.1020E+01 9.0649E+00 6.3587E+00 2.7021E+00 7.8696E-01 1.9807E-01 6.6630E-01 -3.2403E-01 -5.570GE-01 -4.3791E-01 -4.3791E-01 -2.4824E-01 -9.5127E-02	kul 5.5374E+00 9.2906E-01 1.2101E+00 4.5549E-01 2.2282E+00 3.0239E-00 1.8928E+00 1.9725E+00 1.8928E+00 1.7742E+00 1.8299E-01 5.4240E-01 3.4728E-01 4.73958E-01 -2.39558E-01 -2.39558E-01 -2.5189E-02 -9.9814E-02 1.4733E-01

Basic	data, x =	25.0 mm.						
у	Vt	theta V		var0		•01		
30.00 21.00 20.00 19.50 19.00	582.87 570.86 569.84 568.04	110.03 588 102.00 570 98.36 564 97.80 564 97.67 562	12 -121.23 79 -83.02 57 -77.36 95 -75.83	122.455 10	25.719 -15 089.978 -18 27.853 -18 092.864 -12	1.55 0.71 3.06 4.15 2.31		
18.50 18.00 17.50 17.00	568.34 563.44 559.09	97.34 563 96.28 560 95.54 556	.06 -01.54 48 -53.96	333.597 12	29.822 -47	4.44 5.48 9.81 3.11		
16.50 16.00 15.50	553.18 542.42 533.09 494.33	95.34 550 94.90 540 94.43 531 92.88 493	.44 -46.34	2954.6/4 23	13.136 -146 57.436 -237	2.37 8.81		
15.00 14.50 14.00	466.01 425.61 395.42	92.80 465 91.99 425 91.44 395	46 -22.73 36 -14.75 30 -9.93	8955.245 18	197.946 -265 IOR 966 -354	4.63 0.95		-
19 57	370.51 349.15 327.70	90.98 370. 90.94 349. 90.66 327	45 -6.35 10 -5.73 68 -3.79	10252.772 24 10481.388 27 9921.190 28	61.667 -362 83.062 -357 60.578 -385 86.565 -372 09.335 -332	9.39 0.75		
13.00 12.50 12.00 11.50 11.25 11.00	287.47 262.50 256.57 243.29 242.05	91.72 287 90.60 262 90.98 256 90.19 243	34 -8.64 49 -2.74 53 -4.41 28 -0.81	82/9.325 20	05.469 -302 22.247 -297 47.077 -261	7.36 8. 68		
10.75 10.50	242.05 242.77	90.94 242 90.98 242	28 -0.81 02 -3.97 74 -4.16	D912.333 41	83.193 -236 28.734 -217	8.04 7.42		
•	order mame	nt data, x =	25.0 mm. ≢000	\$111	sk0	skl	ku0	kul
у 30.00	1.0848E+0	3 -9.0001E+0	2 -1.4515E+		-1.1509E+00		3.8514E+00	2.6182E+00
21.00 20.00 19.50 19.00 18.50 18.00	-1.0916E+0 -1.0516E+0 -2.5350E+0 -4.9211E+0 -8.4431E+0 1.1772E+0	3 4.7604E+C 2 4.1905E+C 2 7.3092E+C 2 7.1117E+C 4 -5.3387E+C	1.9878E+ 1.1169E+ 1.1166E+ 1.7772E+ 2.2419E+	02 -3.91932+04	1.4669E-01 -8.1840E-01 -8.0927E-01 -1.2380E-01 -4.0370E+00	-6.0145E-01 -1.0891E+00 -1.3736E+00 -1.4400E+00 -1.4407E+00 -1.2774E+00 -7.5587E-01	8.9597E+00 3.2863E-01 5.0109E+00 4.6724E+00 1.9550E+00 3.3174E+01 2.9177E+01	-5.9189E-02 9.2733E-01 2.6084E+00 3.2664E+00 2.9015E+00 4.1372E+00 4.8895E+00
17.50 17.00 16.50	4.9437E+0 8.3165E+0 2.3224E+0 1.8708E+0	4 -4.2205E+0 5 -1.0222E+0	74 -7.3120EH 14 -1.5214EH 15 -5.2941EH	05 -3.6103E+04 05 -2.0284E+04 05 -2.0070E+04	-3.5147E+00 -3.2963E+00 -2.6699F+00	-4.9070E-01 -2.0416E-01	1.4415E+01 1.2181E+01 7.9896E+00	2.9889E+00 2.863BE+00 2.9946E+00
16.00 15.50 15.00 14.50	2.4055E+0. 2.5415E+0. 1.9004E+0.	5 -1.0197E+0	5 -0.93395T	06 3.7822E+04	-1.6033E+00 -1.2080E+00 -6.8158E-01	-2.8305E-01 5.5966E-01 4.5743E-01 3.0998E-01	2.4774E+00 1.1223E+00 -4.1959E-01	1.9726E+00 1.4435E+00 1.0799E+00
13.50 13.00	1.1536E+0 6.8860E+0 4.1469E+0	5 -7.5146E+0 4 -6.6587E+0 4 -4.3360E+0	14 -3.6914EH 14 -2.5143EH	05 5.0609E+04 05 6.0382E+04 05 4.9190E+04	-3.6394E-01 -2.4219E-01 -1.5429E-01	4.1437E-01 4.8800E-01 3.3914E-01 2.8241E-01	-5.8653E-01 -6.8628E-01 -7.3506E-01	5.1758E-01 3.1534E-01 3.3524E-01 5.4739E-03
12.50 12.00 11.50	-3.8953E+0 -1.0579E+0 -1.4079E+0	5 1.3224E+0 5 5.1260E+0	4 3.3166EH 4 3.9152EH	05 1.6363E+04 05 -1.3699E+04	3.3590E-01 5.1970E-01	1.2277E-01 -1.0300E-01	-6.4540E-01 -5.6003E-01 -2.3951E-01	6.3626E-02 6.0997E-02
11.25 11.00 10.75	-1.3313E+0: -1.2533E+0: -1.3458E+0:	5 5.1658E+C 5 6.7742E+C	4 3.6842EH	05 -1.7 805E +04	5.5325E-01 5.7303E-01 6.3191E-01	-1.3315E-01 -1.5658E-01 -2.8535E-01	-1.3291E-01 5.1980E-03 1.7596E-01	-1.8215E-01 -6.7729E-02 2.5672E-01
10.50	-1.3023 E +0	5 7.0130E+	3.2338E+	05 -3.730 1E +04	6.5923E-01	-3.5451 E -01	4.3812E-01	2.7816E-01
Basic	data, x =	30.0 mm.						
у	Vt.	theta V		var0		s01		
35.00 24.00 23.00		109.98 586. 101.54 568. 99.36 564. 98.11 562.	27 -116.02 34 -92.99	129.288 1 143.351 15 130.643 15	25.705 -69 52.255 -179 21.529 -189 04.931 -169 28.417 -169).78 2.52).30 5.66		
22.00 21.00 20.50 20.00	562.10	96.01 559. 95.53 557. 95.60 556.	01 -58.85 35 -53.92 06 -54.49	160.173 9	28.417 -164 85.826 -144 06.696 -23	6.27 6.43		
20.00 19.50 19.00 18.50	559.95 558.72 557.56 551.23 542.59	96.46 554 96.49 547 94.88 540 92.19 496	02 -62.69 70 -62.30 63 -46.14	784.258 25 1904.883 34 1999.413 24	02.344 -689 03.986 -1419 89.680 -1279	9.92 3.14 5.58		
18.00 17.50 17.00	496.65 478.02 454.17 422.31 375.68	92.21 477 91.57 454	67 -18.41 00 -12.43	7133.023 24 8306.979 26 10484.967 23	51.691 -287 61.572 -311 34.930 -326	6.20 7.19		
16.50 16.00 15.50 15.00	422.31 375.68 365.44 358.30	91.09 422. 88.85 375. 89.56 365. 90.07 358.	61 7.53 43 2.78	10484.967 23 10159.162 24 9991.463 26 10246.301 27	31.091 -287 34.930 -325 57.900 -362 50.711 -358 32.756 -376 65.418 -336 79.665 -341 79.665 -341	0.15 5.09		
14.50 14.00	335.83 319.01 302.71	89.96 335. 89.96 319. 89.60 302.	83 0.25 01 0.22			5.04 3.98 6.58		
13.50 13.25 13.00 12.75	280.01 264.63 255.88	90.97 279. 90.31 264. 89.94 255.	97 -4.76 62 -1.44 88 0.26	6430.853 20	28.527 -247 07.003 -227 51.967 -204	7.17).97 6.61		
12.50	254.14	90.49 254.		6046.320 19	99.390 -1909	9.44		
Higher y	s001	nt data, x = #110	30.0 mm. ≉000	s 111	sk0	sk1	ku0	kul
35.00 24.00 23.00	9.7269E+00 -8.7636E+00 -1.6812E+00	2 4.9649E+0 3 6.2221E+0	2 -1.7122E+	D3 -4.5565E+04 D2 -7.3279E+04	-9.9758E-01 -3.8904E-01	4.7607E-01 -7.4505E-01 -1.2347E+00	2.3876E+00 5.4955E+00 3.6625E+00	7.1204E-01 5.4545E-02 1.0673E+00
22.00 21.00 20.50	-1.8449E+0	3 9.0039E+0	3 -9.7353EH 3 -4.1297EH	02 -9.8014E+04 01 -5.6681E+04	-0.03/0E-01 -2.9452E-02	-1.6789E+00	3.6625E+00 4.2567E+00 2.2962E+00 7.3663E+00 8.5012E+00	2.6820E+00 5.8606E+00 6.1293E+00
20.00 19.50 19.00	-5.9273E+0 1.5680E+0 6.2473E+0 1.8856E+0	5.1969E+C 6.9594E+C 4 -3.2793E+C 5 -9.2939E+C	14 -8.8890EH 14 -3.3020EH	04 -1.1277 E+ 05 05 -8.0955 E+ 04	-4.0473E+00 -3.9717E+00	-1.8468E+00 -1.6467E+00 -9.0092E-01 -4.0763E-01	2.2662E+01 1.9233E+01	4.3415E+00 1.3627E+00 7.7420E-01 2.2924E+00
18.50 18.00 17.50 17.00	1.1253E+0: 3.3004E+0: 2.5615E+0: 2.3120E+0:	5 -4.4955E+C	4 –2.4063E++ 5 –9.8986E++	05 -9.2263E+04 05 5.7806E+03	-2.6915E+00 -1.6431E+00 -1.2329E+00 -9.3044E-01	-7.4270E-01 4.7618E-02 -2.5955E-01 1.1332E-01	7.9906E+00 2.5115E+00 9.3274E-01 -7.1357E-02 -7.1542E-01	1.9143E+00 1.5553E+00 1.3159E+00
16.50 16.00	1.1995E+0: 3.0521E+0	5 -4.0623E+0 4 -5.2054E+0	4 -4.7857E+4	05 1.0497E+04 05 5.0908E+04	-4.6736E-01 -1.6974E-01	8.6147E-02	-7.4550E-01 -7.4550E-01	7.0695E-01 1.3337E-01 6.0550E-02
15.50 15.00 14.50 14.00	2.2123E+0- -5.1464E+0: -6.8719E+0- -7.8654E+0-	3 -1.7339E+0 4 1.0784E+0 4 1.6350E+0	4 1.5907EH	05 1. 6315E+ 04	-4.7227E-02	3.3567E-01 2.3821E-01 1.2452E-01 1.0234E-01 -3.2267E-02 -1.2864E-01	-7.9392E-01 -8.0221E-01 -6.8529E-01	7.3480E-02 -2.2148E-01 -2.0309E-01
13.50 13.25	-9.0231E+0- -1.3454E+0	3.2244E+C 5 4.9733E+C	4 1.9470E+	D5 -3.9661E+03	2.8325E-01 5.3343E-01	-3.22678-02 -1.28648-01	-4.9703E-01 -2.3624E-01	-1.5090E-01 -1.3302E-02
13.25	-1.4196E+0	6.0094E+0	4 3.9046EH	05 -1.9564E+04	6.9127E-01	-1.765 6E- 01	1.3297E-01	1.3265E-01

	data, x =	35.0 mm. theta VO			_			
у 35.00	624.59	110.05 586.	74 -214.13	var0 104.275 130.849	varl 122.313	#01 -46.92 -230.35		
27.00 26.00 25.00	566.15 564.98	99.95 562. 98.46 560. 97.84 559.	70 -83.25	130.849 142.465 152.145	122.313 1713.864 1475.569 1774.390	-230.35 -195.48 -207.48		
24.00 23.00 22.50	559.96 557.41 554.63	96.39 556. 95.49 554	48 -62.34 85 -53.36	152.616	1/10.900 1281 802	-188.26 -179.61 -211.62		
22.50 22.00 21.50 21.00	550.83 549.09	94.96 548. 94.52 547.	70 -46.29 76 -47.66 39 -43.25 19 -39.11		1315.710 2147.524 2213.936 2328.756	-686.17 -800.86		
20.30	514.75	92.37 514.	39 -37.18 31 -21.25	4210.062	2328.756 3115.914 1899.129 1828.731	-1151.68 -2057.17 -1825.16		
19.50 19.00 18.50	498.74 467.22	92.06 498.4 91.61 467.6 90.48 442.6	03 -13.16	5584.182 7093.100	2348.6 9 6	-1997.69 -2800.77		
18.00 17.50 17.00	413.25 387.03	90.64 413.2 89.66 387.0	23 -4.61	9124.133	2426.867	-3178.73 -3257.43 -3296.79		
16.50 16.00	362.23 337.21	89.43 372.2 89.98 362.2 89.13 337.3 89.15 325.4	23 0.14 7 5.12	8462.497	2501.807	-3251.64 -3142.15 -2861.06		
15.50 15.25 15.00	325.46 318.00 310.95	89.08 317.9 88.99 310.9	2 4.85 6 5.12	6912.124 6655.475 6396.124	2459.199 2286.293	-2657.15 -2330.65		
14.75 14.50 14.25	305.06	89.11 305.0 88.72 297.7	2 4.72 5 6.65	6396.124 5943.905 5708.782 5694.945	2081.3/2	-2232.57 -2087.01 -1905.93		
				3094.943	1858.643	-1690.62		
Highe:	r order mome s001	nt data, x = s110	35.0 mm. s000	s111	sk0	ekl	leu0	kul
35.00 27.00	5.5544E+0 -1.6641E+0	2 -4.7868E+02	-8.4888E+0	2 3.8190E+0	02 -7.97221			2.6051E-01
26.00 25.00	-2.6085E+0 -2.3016E+0	3 8.0258E+03 3 7.9948E+03	_5 3079F±0	2 -7.6056E+0	04 -3.12141 5 -3.12141	E-01 -1.3418E+00	2.2270E+00 5.0774E+00 5.0227E+00	3.9760E-01 1.3055E+00 1.2430E+00
24.00 23.00 22.50	-1.6154E+0 -8.4129E+0 7.7657E+0	2 7.7841E+03	-1.2443E+01	2 -1.2188E+0 3 -7.7126E+0 3 -8.5458E+0 5 -9.7724E+0	05 1.63071 04 -6.59981	E-01 -1.7133E+00 E-01 -1.6804E+00	2.9607E+00 4.6262E+00	1.3055E+00 1.2430E+00 2.5792E+00 3.7140E+00
22.00 21.50 21.00	7.1235E+0- 8.8429E+0- 1.3737E+0: 2.6478E+0:	4 ~2 46405404	-1 6041E+0	\ _1)5 -4.28561	E+00 -9.8197E-01 E+00 -1.0094E+00 E+00 -8.6125E-01	3.2799E+01	6.4185E+00 2.5390E+00 2.9380E+00
20.50 20.00	1.9883E+0	5 -7.8660 2. +04	-5.3800E+03	-7.1411E+0 -2.9476E+0			8.0967E+00 4.8795E+00	2.4603E+00 1.5048E+00 3.0404E+00
19.50 19.00 18.50	1.9652E+0 1.8106E+0 1.2622E+0	5 -3.1055 E+ 04	-6.8592E+05	3.9358E+0 -3.6030E+0 -3.6224E+0	03 -1.59401 04 -9.59831 02 -6.35111 03 -2.94191	E+00 7.5902E-02 E-01 -3.1654E-01 E-01 -3.3683E-03	2.2496E+00 1.8418E-01 -6.5227E-01	2.5017E+00 1.7440E+00 1.1997E+00
18.00 17.50 17.00	5.0434E+04 4.3623E+04 -7.8561E+03	4 -4.9842E+04	-2.4590E+05 -1.3176E+05 -2.4932E+04	6.2969K#0	03 -2.94191 04 -1.51181 04 -3.05121	E-01 6.6685E-02 E-01 3.5941E-01 E-02 3.4970E-01 E-02 2.2455E-01	-6.5227E-01 -7.9999E-01 -8.2296E-01 -8.2246E-01	1.1997E+00 7.5791E-01 1.2963E-02 1.2451E-01 5.2729E-02
16.50	-1.4774E+04	-1.4780E+04	-2.5431E+04	2.8099E+0	4 -3.2667E	3-02 2.2455E-01	-6.4084E-01	5.2729E-02
16.00	-1.0476E+05	3.5176E+04	1.9640E+05	-3.0202E+0	3 2.8243E 2 3.6377E	-01 -2.3965E-02	-6.3772E-01	4.8769E-02
15.50 15.25 15.00	-9.9212E+04 -1.1035E+05 -1.1864E+05	4.6696E+04 6.3450E+04	2.0905E+05 1.9052E+05 2.0898E+05	-4.2296E+0: -1.7303E+0	3 3.5089E	-01 -3.8690E-02	-4.0936E-01 -3.8998E-01 -2.6187E-01	-1.6722E-01 -1.5572E-02 1.8947E-01
14.75 14.50 14.25	-1.0816E+05 -1.0545E+05 -8.7247E+04	5.5177E+04	1.9599E+05 1.8243E+05 1.5297E+05	-2.0418E+0	4 4.2294E	-01 -1.9682E-01 -01 -2.1503E-01 -01 -3.3301E-01	-1.3925E-01 6.4236E-02 -1.1583E-01	3.1196E-01 4.3302E-01 4.2253E-01
				2,775			2.2000	
Basic	data, x = 4	0.0 mm.						
7		theta VO	V 1	var0	varl	s 01		
40.00 29.00 28.00	560.67	09.82 583.10 97.67 555.65 98.31 555.58	_76 82	139.489 1	806.798	-104.23 -284.33 -398.69		
28.00 27.00 26.00	554.82 556.79	98.31 555.56 95.19 552.55 95.56 554.17 94.66 552.15	-81.14 -50.23 -53.90	118.039	929.978 626.057	-138.67 -278.28		
25.00 24.50 24.00	549.03	94.29 350.42 94.80 547.10	-45.03 -41.29 -45.99	229.265 13	288.827 446.083	-239.81 -237.17 -818.25		
23.50 23.00 22.50	544.12 533.08 526.06	93.62 532.02	-44.14 -33.67 -34.82	1880.232 29 3495.716 21 4116.333 36	723.742 -	1356.45 1743.19 2464.43		
22.00 21.50	512.90 505.23	91.84 512.64 91.70 505.01	-34.82 -16.50 -15.01	1216.200	606.409 -	2464.43 1712.48 1491.23		
21.00 20.50 20.00	412 21	91.32 478.46 91.54 464.65 89.80 412.31 88.52 376.70	-11.04 -12.45 1.46 9.74	4196.119 10 4246.289 1 6529.839 1 6774.542 1 9337.557 2 9282.037 2	759.626 - 711.446 - 167.280 - 341.569 -	2159.96 2028.38 3086.90 2976.25		
19.50 19.00 18.50	376.83 357.26 342.47	88.52 376.70 87.79 356.99 87.76 342.21 87.44 328.15 87.68 314.85	9.74 13.80 13.41	9282.037 23 8143.571 24 7156.485 22	341.569 - 412.743 - 280.957 -	2976.25 2889.91 2542.66 2392.16		
18.00 17.50 17.00	328.48 315.11 308.10	87.79 356.99 87.76 342.21 87.44 328.15 87.68 314.85 87.95 307.90	13.41 14.68 12.73 11.00	6552.400 22 5720.797 20 5438.109 19	012.192 -	2392.16 1964.18 1792.37		
16.75 16.50 16.25	302.80	87.99 302.61 87.82 299.23 88.30 298.05		5031.649 18 4677.565 17 4569.933 16	394.254 - 724.155 -	1620.49 1419.77		
16.00	298.18 296.28	88.30 298.05 88.96 296.23	8.84 5.36	4569.933 16 4656.351 15	560.909 -:	1262.32 1308.31		
Higher	order momen	t data, x = 4	0.0 mbm.					
y	#001	8110 2 60805±03	#000	#111	sk0	sk1	ku0	kul
40.00 29.00 28.00	2.7865E+03 -3.0522E+03 -6.6475E+03	-2.6980E+03 1.3991E+04 1.5742E+04	-3.0090E+03 5.0491E+02 5.6858E+02	2.7714E+03 -1.0102E+05 -1.2707E+05	3.0648E- 1.4016E-	+00 1.1259E+00 -01 -1.3153E+00 -01 -9.0554E-01	5.4265E+00 1.7816E-01 4.3650E+00	4.2176E+00 1.0299E+00 -4.3938E-01
27.00 26.00	-2.2949E+03 -2.7956E+03	1.0293E+04 1.7665E+04 1.0191E+04	4.2514E+02 3.4196E+02 -2.7967E+03	-6.2722E+04	3.0648E- 5 1.4016E- 6 3.3151E- 6 1.6528E- 6 -1.1472E-	-01 -2.2116E+00 -01 -1.8389E+00 +00 -1.5708E+00	8.8029E-01 2.3652E+00	6.0398E+00 3.0068E+00
25.00 24.50 24.00	1.5204E+03 2.9443E+03 7.8211E+04	7 457517403	-5.8891E+03	-1.2707E+05 -6.2722E+04 -1.2058E+05 -9.4839E+04 -8.1598E+04 -9.8057E+04	-1.6965E -4.2707E	+00 -1.7635E+00 +00 -8.1053E-01	4.3650E+00 8.8029E-01 2.3652E+00 9.7585E+00 9.5235E+00 2.7039E+01	4.1478E+00 5.2612E+00 2.0043E+00
24.00 23.50 23.00 22.50	7.8211E+04 1.5293E+05 2.3682E+05 2.9622E+05 1.7812E+05 1.5097E+05	-6.8416E+04 -7.7289E+04 -1.0824E+05	-1.1114E+05 -2.7849E+05 -6.4013E+05 -6.4967E+05	-9.6991E+04 -8.8036E+04 -7.8669E+04	-4.2707E- -3.4158E- -3.0972E- -2.4600E-	+00 -1.7635E+00 +00 -8.1053E-01 +00 -5.9729E-01 +00 -6.1932E-01 +00 -3.8569E-01	1.3894E+01 1.0321E+01 6.3796E+00	1.51958+00 2.01408+00 1.18108+00
22.00 21.50	1.7812E+05 1.5097E+05	-6.6396E+04 -6.0458E+04	-5.4704E+05	7.5968E+03 1.5603E+04 1.6192E+04	-2.0125E -1.7383E -1.1282E	+00 1.1799E-01 +00 3.0394E-01	4.2381E+00 2.8560E+00	2.0043E+00 1.5195E+00 2.0140E+00 1.1810E+00 2.5022E+00 2.9779E+00
21.00	1.6367E+05	-6.2344E+04	-5.9533E+05	1.6192E+04	-1.1282E4	+00 2.1937E-01	6.2070E-01	1.8563E+00

20.50	1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
-------	---

Ref.: 3-6

Author: Kussoy and Horstman

Geometry: 3-D Fin Mach number: 8.2

Data: p_{wall} , q_{wall} , c_{f} , flowfield pitot surveys

A detailed investigation of hypersonic sharp-fin interactions on a flat plate was carried out by M. I. Kussoy, K. C. Horstman, and C. C. Horstman of NASA-Ames Research Center (Refs. 3-6). Since a detailed data report (Ref. 3) has already been prepared on this experiment, the present treatment will be brief. The data included in the file KUSSOY3.DAT are exactly those given in Ref. 3 for sharp-fin interactions, plus some additional data (notably skin friction) supplied by the experimenters after Ref. 3 was published.

The data were obtained in the NASA-Ames 3.5-foot hypersonic wind tunnel, using a flat-plate model with a length of 220 cm. Natural transition occurred on this plate for all test conditions. While no turbulence data are available to establish the condition of the incoming boundary layer ahead of the interaction, a mean profile included in this dataset shows typical law-of-the-wall behavior, albeit with a lower wake-strength parameter than usual.

Fins of 5, 7.5, 10, 12.5, and 15 degree angle-of-attack were mounted on the flat plate. The fin leading-edge position was 176 cm aft of the plate leading-edge. The x,y,z coordinate frame used to describe the measurements is indicated in the sketch below. Given this information and the table of freestream properties in the data file, most of the measured distributions are self-explanatory.

One feature of this experiment is redundant data, considered a desirable aspect of benchmark experiments in Ref. 1. Similar heat transfer data are obtained by two different techniques. Redundant pressure and heat transfer data are included in the data file to establish the repeatability of the experiment.

Users of these data should note that this fin interaction involves a relatively-thicker incoming boundary layer than the supersonic fin interactions included elsewhere in this database. The reason for this is the long flat-plate run required to naturally establish a turbulent boundary-layer at Mach 8. Thus the present fin is only 8 incoming-boundary-layer-thicknesses long, compared to relative fin lengths 5 times larger in the Penn State experiments at Mach 3 The net effect is that the present and 4. interaction lies entirely within its turbulent boundary-layer, while the supersonic interactions just referred to extend far outside their respective boundary-layers. The supersonic and Mach 8 cases are thus not directly comparable.

****			S = DISTANCE ALONG FIN SURFACE WESSURED FROM LEADING EDGE.	<u>.</u>		0.845 0.270 0.008 0.845 0.277 0.008 0.845 0.277 0.008 0.916 0.234 0.972 0.947 0.429 0.945 0.947 0.540 0.945 0.977 0.656 0.959 0.977 0.656 0.977 1.025 0.968 1.012 1.025 0.968 1.012 1.025 1.019 1.000	PLATE WITH FIN	AMGLE (deg) 15.0 35.7 44.7 47.2
2.22 2.26 2.26 4.30 5.50 5.50 7.59 8.30 8.30	жения в 10,34 ст		3.43 5.45 5.45 5.45 6.41 9.41		Fin Angle = 2		Fin Angle ≖	
74.8 75.0 75.0 75.0 75.2 10.2 10.0	SURFACE PRESSU	Fin Angle = 5 deg 1.855 1.823 1.790 1.994	2.145 2.355 2.419 2.435 2.597 2.597	C.013 seasessassessesses seasessesses surface Pressures X =	5 deg 2(cm) P/P 1MF	15.82 1.000 13.83 0.979 13.83 0.946 13.83 0.940 13.83 0.940 9.82 0.990 6.82 1.115 5.82 1.008 6.82 1.116 5.82 1.116 5.82 1.116 5.82 1.116 5.83 1.410 1.83 1.400 0.83 2.000	12.5 deg 2(cm) P/P 1HF	16.27 1.229 17.27 1.229 17.27 1.226 11.28 1.223 0.03 1.327 0.03 1.327 0.03 1.327 0.03 1.327 0.03 1.327
27.2 m m 4 v 4 v 4 o 5 4 5 8 8 8 8 9 4 9 7 5 7 4 7	10.55 10.55 SURFACE PRESSURES ON FIN (P/P INF)	_	3.290 4.823 3.613 5.371 3.613 5.371 3.803 5.677 4.032 5.839 4.016 5.935	3	7.5 de 2(cm) P/	**************************************	15 d 2 (cm) 2	######################################
	0.0 ***********************************	•	6.242 5 7.274 7 7.435 7 7.532 8 7.532 8 7.694	TH FIN	deg P/P liff 2(cm)	1,089 14 1,080 11 1,084 11 1,084 11 1,103 19 1,113 11 1,113 11 1,1	deg P/P 1#f	1.021 1.037 1.094 1.292 1.529 1.839 2.145
25.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5		15 deg 5.871 5.274 5.000 6.484		1	7.	45.21.00.00.00 86.866666666666666666666666666		

15.75 0.26 15.27 0.99 14.76 0.99 13.78 1.02 13.78 0.99 13.78 1.02 13.78 0.99 13.78 1.02 13.78 0.99 13.78 1.02 13.28 0.99 13.78 1.02 11.32 0.99 13.78 1.05 11.32 0.99 13.78 1.05 11.32 0.99 13.78 1.05 10.03	2.5 deg 1.67 1.30 3.81 1.30 1.25 1.30 1.25 1.30 1.25 1.30 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	3.54 0.68 4.07 Transfer on Flat Plate a 15.48 9/QIMF z(cm) 9/QIMF 1.33 13.47 1.05 1.46 12.99 0.89 1.54 12.03 1.03 1.56 12.09 0.89 1.95 11.53 1.03 2.10 11.04 0.89 2.51 10.54 1.01 2.96 10.04 0.83 3.11 9.03 0.84 3.11 9.03 0.84 3.11 9.03 0.84	Skin-friction on flat Plate with Fin, X = 15.5cm blaces data in AIAA paper 91-1761 which was in error) gle = 10 deg Cf x 10 uncertainty x(cm) Cf x 10 uncertainty 1.00 +/- 0.18 9.00 1.00 +/- 0.18 1.00 +/- 0.10 2.73 2.40 +/- 0.83 0.87 +/- 0.21 1.35 4.59 +/- 0.81 1.06 +/- 0.21 1.35 4.59 +/- 0.81 1.07 +/- 0.21 0.60 5.86 +/- 1.33 2.49 +/- 0.54 2.49 +/- 0.56
천 추 , 전 전 드 등 수 된 수 수	Fin Angle = 1.7. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.	Additional Heat 2 (cm) 9/01MF 2 (cm) 10 deg fin angle 2 (cm) 9/01MF 2 (cm) 11.87 1.02 5.40 10.43 1.06 5.40 10.43 1.06 5.40 10.43 1.06 5.40 10.43 1.06 5.40 5.40 1.02 2.59 6.40 1.02 1.39 6.40 1.02 1.39	Skin-friction (replaces data in fin angle = 10 deg z(cm) Cf x 10 unce y.00 1.00 +/- 7.12 0.84 +/- 6.52 0.87 +/- 6.52 0.87 +/- 6.52 1.56 +/- 5.16 1.87 +/- 1.24 2.92 +/- 0.83 2.49 +/- 0.83 2.49 +/-
	7/PINF 2.34 2.35 2.37 2.57 2.57 2.57 2.50 3.31 7.65 7.63 7.63 7.63	12.5 deg 15 deg 3.47 4.24 3.67 4.25 3.69 5.50 3.83 5.30 2.90 4.02 2.40 3.05 2.41 3.08 2.42 2.93 2.42 2.93	12.5 deg 15 deg 3.43 4.26 3.54 4.74 2.31 4.26 2.31 3.01 2.57 3.26 FIN
4.72 2.452 3.72 2.452 2.73 2.613 1.73 6.387 0.73 6.387	15 deg fin angle 2(cm) P/PIMF 2(cm) 13.49 0.96 6.49 17.250 0.96 5.49 17.20 0.96 4.99 17.20 1.01 4.49 17.20 1.01 4.49 17.20 1.01 4.49 17.20 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.01 4.49 17.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	7.5 deg 10 deg 2.06 3.04 1.80 2.86 2.11 2.99 2.37 3.27 2.32 3.02 1.98 2.54 1.68 2.03 1.68 2.05 1.67 2.06 1.67 2.06	2 cm 7.5 deg 10 deg 1.65 2.61 1.66 2.40 1.51 2.16 1.23 1.74 1.38 1.91 On FAT PLATE WITH (= 16.45 cm 7.5 deg
5.27 2.194 4.27 2.371 3.28 2.38 2.38 1.28 3.994 0.28 5.065 Surface Pressures x = 18.19cm	fin angle 2(cm) P/PINF 2 5.49 1.78 5.06 1.87 4.09 1.97 4.09 1.97 5.50 2.05 5.50 2.05 1.50 2.08 1.50 2.08 1.50 2.08 1.50 2.08 1.50 2.08 1.50 2.08 1.50 2.08 1.50 2.08 1.50 2.08	MEAT TRANSFER ON 18, S = 16.70 cm 1.28 1.17 1.30 1.46 1.45 1.45 1.43 1.43 1.43 1.17 1.17 1.19 1.19 1.10	Gauges, S = 19.4 1.34 1.39 1.43 1.43 1.06 1.06 1.17 MEAT TRANSFER
Additional	10 deg f1 11.50 0.95 11.02 0.99 11.02 0.99 10.04 1.00 9.49 1.00 9.49 1.00 9.49 1.00 9.49 1.01 8.49 1.13 8.49 1.13 6.40 1.32 7.04 1.41 6.40 1.55 6.00 1.55	Thermocouples, Y(cm) F. 0.47 0.95 1.45 2.45 2.45 5.45 6.43 8.43 8.43	Schmidt-Boelter Y(cm) Fil 2.45 3.45 4.43 5.45 7.15 9.15 9.15

FLOW FIELD YAW ANGLES (DEGREES) 10 DEGREE FIN ANGLE X = 17.23 cm	

5.08	75.0 4 2 0 0 0 0 0 0 0
3.81	2555 × × × × × × × × × × × × × × × × × ×
2.54	885517 28 22 22 22 22 22 22 22 22 22 22 22 22
1.91	X8254450000000
1.27	%2522277000000
2(cm) = 0.64	5 548886555111111
Y(cm)	00000011110000000000000000000000000000

FLOW FIELD PITOT PRESSURES (PTZ/PTZ INF)

	5.08	0.15	۵. د	0.28	0.35	77.0	0.55	0.62	٥.٢	K	0.80	0.85	0.89	8.9
	3.81	0.16	0.2 2	97.0	0.32	0.41	0.51	9.0	0.78	0.88	0.89	16.0	0.93	% .0
	2.5	0.33	0.31	0.30	0.33	0.30	67.0	0.61	9.76	6.0	1,15	1.33	1,40	1.32
FIN ANGLE	2.	07.0	0.39	0.38	0.45	97.0	0.57	0.70	98.0	1.07	1,31	1.67	1.97	2.32
DEGREE X = 17.	1.27	0.51	9.60	0.63	69.0	ь. К	79.0	98.0	<u>:</u> :	1.27	1.48	1,71	 8	2.21
10	39.0	15.0	٥.	0.85	6.0	- 6	4.16	1.26	1.5	1.61	£.	1.97	2,15	2.47
	Z(CR) =													
•	Y(CM)	0.3	0.50	٠. بر	7.00	2.2	2.50	۲. تخ	2.00	2.25	2.50	2.7	3,00	3.3

FLOW FIELD YAW ANGLES (DEGREES)

	6.35 7.62	32 %													0	
	5.08	33	32	22	2	=	s	7	-	0	0	0	0	0	0	
.	3.81	37	33	R	ສ	1	5	•	-	0	•	•	0	0	0	
X = 17.44 c	2.54	8	35	8	28	2	2	•	~	-	-	0	-	-	-	
×	1.91	3	ສ	7	2	₽	2	₽	2	•	~					
	1.27	3	ĸ	22	2	2	₽	4	9	₽	*	¥	7	7	\$	
	2(cm) =															
	Y(cm)	0.00	0.25	0.50	5,7	9.	1.25	1.50	<u>۔</u> لا	2.00	2.2	2.50	2.73	3.00	3.23	

FLOW FIELD PITOT PRESSURES (PTZ/PTZ INF) 15 DEGREE FIN ANGLE x = 17.44 cm

(CB)	z (cm) z							
ζ.		98.0	0.62	77.0	9.3	0.50	0.17	-
5		0.93	0.59	0.41	0.34	97.0	2.0	3
K		8	0.52	0.33	0.31	0.27	0.27	0.5
8		88.0	25.0	0.30	6.0	0.33	%	6
2		16.0	0.47	0.33	0.33	0.41	25.0	7.0
2		8	0.53	07.0	0.42	0.54	0.59	0
K		1.15	0.63	9.5	0.58	٥.	0.70	3.
00.		13	26.0	0.5	7.0	98.0	0.74	ö
. X		85	8	0.89	96.0	0.97	€.	3
5		98.	1.17	1,12	1.14	8.0	¢.	6
K		2.23		1.35	1.15	0.80	98.0	9
8		5.49		38	8.	0.93	8.	2
3		2		1.22	0.98	0.98	9.98	9

Ref.: 14

Author: Kussoy and Horstman

Geometry: Crossing Oblique Shock Waves

Mach number: 8.3

Data: p_{wall}, q_{wall}, flowfield pitot surveys

A detailed investigation of hypersonic crossing-shock interactions on a flat plate was carried out by M. I. Kussoy, K. C. Horstman, and C. C. Horstman of NASA-Ames Research Center (Refs. 14). Since a detailed data report (Ref. 14) has already been prepared on this experiment, the present treatment will be brief.

The data included in the file KUSSOY4.DAT are exactly those given in Ref. 14. These data were obtained in the NASA-Ames 3.5-foot hypersonic wind tunnel, using a flat-plate model with a length of 220 cm. Natural transition occurred on this plate for all test conditions. While no turbulence data are available to establish the condition of the incoming boundary layer ahead of the interaction, a mean profile included in this dataset shows typical law-of-the-wall behavior, albeit with a lower wake-strength parameter than usual.

Opposing pairs of fins, each having either 10 or 15 degree angles-of-attack were mounted on the flat plate as shown in the sketch below. The x,y,z coordinate frame used to describe the measurements is also indicated in the sketch. Given this information and the table of freestream properties in the data file, most of the measured distributions are self-explanatory.

As in the case of the Mach 8 single-fin interaction, Refs. 3-6, users of these data should note that this crossing-shock interaction involves a relatively-thicker incoming boundary layer than the supersonic crossing-shock interactions included elsewhere in this database. The supersonic and Mach 8 cases are thus not directly comparable.

DISTRIBUTION
TRANSFER
HEAT
Š
PRESSURE
SURFACE
H.
CENTERL
EAMAISE

STREAMLISE CENTERLINE SURFACE PRESSURE AND NEAT TRANSFER DISTRIBUT	10 x 10 DEGREE SNOCK GENERATOR Streamlise centerline surfage pressures on flat plate	•	1.20 0.84														26.34 7.52												and a distribution of the second of the	10 × 10 DEGREE SMOCK GENERALUR STREAMLISE CENTERLINE SURFACE NEAT TRANSFER ON FLAT PLATE	FROM THERMOCOUPLES	•	X (CM) W/Y INF													20.03 2.74	
STREAMNISE CENTERLINE S	10 x Streamlise centi																												;	C OL																	
•	- -																11 / 11 INF	•	0.270		0.770	0.795	0.840	0.859	200	0.873	0.902	0.921	1.921	0.93	0.968	986.0	0.700	9%.0	166.0	906.0		7,00,	1.003	1.00.1	1.009	1.023	1.017	1.00	- 60	1,000	
•	***************************************													*******			RHOU /	3	0.00	2,5	0.241	0.265	0.293	0.32	12.0	0.430	0.448	0.480	41.5	3	0.600	0.614	689	0.732	0.767	900	8,0	0.8%	0.912	0.930	0.943	B 56.0	9 6	8	000	.00	
***************************************														*******		œ	/ 0 :		0.00	2,2	9.78	0.785	0.823	0.843	2,28	0.877	0.898	0.914	9.5	0.943	0.955	9,0	0.078	0.981	0.980	0.987	8 6	766.0	96.0	96.0	8	,00	8 6		8	8.0	
*************************	MCK 8.3	111045												********		JARY LAYE	\ 	<u> </u>	3.744	3 765	3.148	2.957	2.811	2.631	\$? ? ?	2.063	2,002	.903	787	98.	1.591	2.5	2,4	1.341	1.278	1.2%	8 5	1.10	1.0%	990.	1,059		7.04.7	1.63	8	8.	*******
	CTION AT P	FREESTREAM CONDITIONS														UPSTREAM BOUNDARY LAYER	RMO /		0.267	3,0	0.318	0.338	0.356	98.0	97.0	067	0.499	0.526	0.559	009.0	0.628	9.636	200	0.746	0,783	0.817	3 3	0.0	0.918	936	9%6	7.0	96.6	7 E	. 6.	1.009	******
	103909 E/ R INTERA	FREES			'n					,	u			*******	!	IS do	\ <u>1</u>		000	88	88	90.	00.	88	38	80	8	900	8 8	38	000	88	3 8	1.000	1.000	88	3 8	8	1.000	1.00	90.	8	88	3 8	8	90.	
	NASA TH HOCK-LAV		20) K	=0.0186 KG/H"3	± 300 K	6 €	25 G	= 0.083 CM	= 21.6 N/N^2	3.3EE+06	0.99EE-03	S6EE-03	*******			¥		000.	2.53 X X	530	5.772	920	8	2	920	5.247	2.477	9.678	6.039	5.25		76.	500.	7.171	27.	7 7 7	900	7.875	0%	3.023	2.0%	3,132	73.107	; £	8.275	
**************************************	DATA FILES FROM MASA TW 103909 ON A CROSSING-SMOCK-MAVE/ TURBULENT BOUNDARY-LAYER INTERCTION AT MACH 8.3			00 " JNI 1	<u>.</u>			DELTA* 0 = 1.				CF INF # 0.	н	***************			4 (CM)																													3.310	

15 x 15 DEGREE SMOCK GEWERATOR STREAMJISE CENTERLINE SURFAGE TRANSFER ON FLAT PLATE FROM THEMOCRIPLES	X (cm) Q/O INF			24.0 26.7										\$1.00 DV.05		TRAMSVERSE SURFACE PRESSURE, YAW ANGLE, AND HEAT TRAMSFER DISTRIBUTION	Ī		10 x 10 DEGREE SWOCK GENERATOR	TRANSVERSE SURFACE QUANTITIES, STATION 1	Pressures (X * 18.2 cm)	Z (cm) P/P INF						5.50 52.50 5.40 5.70	EXCERPT ONLY
27.42 4.94 28.42 5.21 29.43 5.59 21.43 5.59				15 x 15 DEGREE SHOCK GENERATOR	STREAMUISE CENTERLINE SURFACE PRESSURES ON FLAT PLATE	ant d/d (mg) x		2.25																				37.57 14.03	

EXCERPT ONLY SEE DATA FILE KUSSOY4.DAT

Ref.: 10-11

Author: Lee and Settles Geometry: 3-D Fin Mach number: 3, 4

Data: ch

The Ph.D. research of Yeol Lee in the Penn State Gas Dynamics Laboratory involved measuring the heat transfer distributions beneath several sharp-fin interactions. The test conditions at Mach 3 and 4 and the fin angle-of-attack range were the same as those already documented here and in Ref. 1 for the Penn State series of sharp-fin experiments, which also includes surface pressures, surface flow directions, skin friction distributions, and flowfield density profiles. The present heat transfer data, listed in the file LEE.DAT, are thus supplementary data.

These heat transfer measurements required the development of a special heated-model technique for steady-state heat transfer in an otherwise near-adiabatic wind tunnel. The technique is discussed at length in Refs. 10 and 11. It was assumed, for simplicity of the instrumentation layout, that the quasiconical-flow approximation is valid for sharp-fin interactions (see, eg, Alvi and Settles, AIAA Journal, Vol. 30, Sept. 1992, pp. 2252-2258). 37 RTD heat transfer gages were thus arrayed in two adjacent circular arcs, centered at the fin leading edge location, with radii of 86.4 and 91.4 mm. The fin leading edge was 22.16 cm aft of the flat plate leading edge. The lateral spacing of the gages was such that their resolution was 2 degrees of the azimuthal interaction angle β over a β range of 6 to 78 degrees. the radii of the two gage rows was chosen to place them well outside the inception zones of all interaction cases studied.

A special feature of this dataset is the fact that adiabatic wall temperatures were actually measured rather than inferred, so the data are presented in terms of true heat transfer coefficients rather than dimensional heating rates. For more detail on this issue, please see Refs. 10 and 11.

annatarananasanananananananananananananananan	MACH 3	MACH 3, 160EG FIN INTERACTION		
HEAT TRANSFER-	C MARK C	otal uncertainty \star 8.8%)	PACH 4.	MACM 4, 20DEG FIN INTERACTION (Max total uncertainty ± 9.0%)
STANKY TIM SMOUKNOL IMPREMENTION DATA - PENN STATE GAS DYNAMICS LAB	BETA (DEG)	CH/ CH 18F	BETA)
FREESTREAM CONDITIONS:	87.8	500	(06G)	CH INF
	55.9	0.933	87.8	1.000
stagnation pressure 120 paim (827 kPa)	53.7	0.978	9.50	0.948
	7.73	1.024	51.8	1.0%
Reynolds number 6.19E+07/m	4.14	1.073	47.7	1.17
	39.5	1.95	7.17	1.616
	31.2	25.	 	2.655
stegnation pressure 221 pala (1524 kPa)	29.0	2.033	31.2	2.492
Stagnation temperature 293 K Revnolds number 6 705+07/m	27.0	2.456	29.0	2.992
TW/Taw * 1.06 (Toughty adiabatic)	. °	2.944	27.0	4.227
INCOMING BOUNDARY LAYER PARAMETERS AT X=178 am EROM ELAY-DLAYE	20.7	3.183	22.9	4.452
LEADING EDGE	<u>.</u>	*88.7	******	***
Mach 3 (actual freestream Mach number was 2.91 for this survey)	HUAM	SOME RIM INTERACTION		
Delta = 3.02 mm	(max to	(max total uncertainty ± 12.8%)		
Detail II U.095 am				
Cf = 0.001520	8E 1A (DEG)	CH INF		
Re(theta) = 9/51		***************************************		
Mach 4 (actual freestream Mach number was 3.88 for this survey)	55.0	0.000		
Delta = 2.87 mm	53.7	0.965		
Delta H C.YO FEE	51.8	1.032		
cf = 0.001325	1.7.1	1.270		
Re(theta) = 9082	36.5	1.400		
	33.2	2.438		
REFERENCE NORMALIZERS	31.2	2.603		
MACH 3 CH INF = 0.86E-03	27.0	5.759		
F	8.8	3,455		
	52.9	3.074		
MATE: Bare and the state of the				
nois: meta values are messured from tin tending coge, not VCO	MACH 4,	MACH 4, 16DEG FIN INTERACTION (mex total uncertainty ± 9.5%)		
MACH 3, 100EG FIM INTERACTION	4138	ì		
(max total uncertainty ± 10.9%)	(DEG)	CH INF		
BETA CH/	£7.8	1 200		
(DEG) CM IMF	55.9	0.921		
57.8 1.000	53.7	0.955		
	7.73	0.962		
55.7 0.974 51.8 0.983	41.6	1,081		
	33.2	1.325		
	31.2	1.618		
39.5 0.922	29.0	æ.		
	27.0	2.167		
86.0 0.99	22.9	3,136		
	29.7	17077		
22.9 1.508	19.7	3.632		
20.7 1.727 18 7 1 011				
12.5 1.963				

Ref.: 7-9

Author: Rodi and Dolling

Geometry: 3-D Fin Mach number: 4.9

Data: pwali, qwali, surface-flow traces

In this experiment, a single sharp fin was used to generate an attached oblique shock wave which interacted with an incoming turbulent boundary layer formed along a flat plate test surface. The freestream Mach number was 4.90, the nominal total pressure was 315 psia (2.7 MPa) and the nominal total temperature was 760 degrees R (422 K). The freestream Reynolds number was 11.7 x 10⁶/ft. (38.4 x 10⁶/m). The model was at ambient temperature before each run. This combination of tunnel total temperature and model temperature resulted in a cool wall condition with a wall temperature/recovery temperature ratio of 0.8. Pitot pressure surveys were made of the incoming boundary layer just ahead of the fin and are included in this dataset.

Mean surface heat transfer (using Schmidt-Boelter gages) and surface pressure data (using pressure taps and a scani-valve) were measured on the test surface along spanwise rows for a range of fin angle of attack. The kerosene-lampblack surface tracer technique was used to visualize the distribution of the local shear stress direction. Data were collected at six different fin angles of attack (6-, 8-, 10-, 12-, 14- and 16-degrees). Additional heat transfer data were taken along conical rays from the virtual conical origin (VCO) for fin angles of attack of 8- and 15-degrees. The investigator reported an error band of +/-8% for the heat transfer data and +/-3% for the pressure data.

The X-dimension is the downstream direction measured from the fin leading edge. The Y-dimension is the cross-stream direction measured from the fin leading edge, in the spanwise direction towards the compression side of the fin. The Z-direction is the vertical direction above the flat plate test surface.

Three different rotatable instrumentation "plugs" were used to make the present measurements. The "plug" used for wall pressure measurements had four rows of taps which were initially oriented in the spanwise (Y) direction (see diagram 1). The spanwise pressure data for 6, 8, 10, 12, and 14 degree fin angles were taken on the two downstream tap rows (rows 3 and 4 in diagram 1). Then, by rotating the instrumentation plug clockwise, the pressure-tap rows were reoriented to better approximate conical cross-planes (see diagram 2). For 8 and 16-degree fin angles, the plug was rotated 15 and 30 degrees clockwise, respectively, from its initial position. For these two fin angles, three rows of pressure data (rows 2, 3, and 4) are tabulated for both spanwise and rotated orientations of the instrumentation plug.

医生物性白色性白色性性白色性白色性白色性白色性白色性白色性白色性白色性白色性白色性白色				2	0.10866E+00	SE+00	0.735	=	517	3.42	569.33
KUDI JANI				2;	0.1132/E+00	7E+00	0.73	= :			20.05
CAADO - FIN - CEMERATED - CHOCK - CAVE /TIBBE - FIN - CEMERATOR	, 04 0			<u>.</u>	0.119696+00	8	0.731	₽;			271.13
_	- EUO			~ ~	0.12246+00	204	0.727 7.27	2 #	15.017	7.67 1.07	272.21
	,			2	0.1372	3 5	0.727	25			77.5.67
	**********			2	0.1455	304	0 223	2 ¥			6. K
				12	0.1530	3E+00	0.721	i t			X 2
NOMENCLATURE				22	0.15929E+00	%+00	0.718	. 2			778 212
				≈	0.1658	7E+00	0.716	. 2			17
				%	0.17480E+00)E+00	0.713	-			81,03
	e, degrees			ĸ	0.18327E+00	7E+00	0.711	₽			\$82.65
BETAO = angle of inviscid shock trace, degrees	ě			%	0.19091E+00	1E+00	0.708	=			183.91
BETAU = upstream influence angle, degrees				22	0.19795€+00	5€+00	0.706	=			385.17
				82	0.205946+00	00+e+00	0.703	5			196.61
BEVEO = Deta angle from VCU, degrees				₽ ;	0.21563E+00	3E+00	0.700	۵.			288.41
BEFLE = Deta angle from fin leading edge, degrees	grees			ຊ;	0.22791E+00	9	969.0	≈:			50.57
BID a period ciptic presents within bounds	Andary Layer			Ā .	0.25.72E+00	E • 00	0.693	≅ :			92.19
PIDO H meseured fotal pressure Lithin boards	y tayer, para			X 2	0.24/8/2+00	3 5	0.690	₹ ?			17
8LTO = assumed total removature within boundary layer	chary layer F			2 3	0.238825+00	3 5	000.0	₹ 5			5.5
CH = Stanton number	•			*	0.28004E+00	00+31	0.679	3 8			10 00
				*	0.30000E+00	2€+00	0.673	2 2			03.35
DELTA = incoming boundary layer thickness, 0.25 in.	.≿ in.			37	0.3106	£+00	0.670	2			105.33
	ap/transducer,	inches									
Li = (engin of teacing eage inception region,	i, inches					*****		****	****		*********
·. I				*****	*******	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ATALE PRES	SUKE UALA		****	
PO = turnet total pressure, psia											
GDOT = wall heat transfer, BTU/ft^2/sec											
R = radial distance from VCO, inches				Below an	c the sp	anuise pre	SSUF # meas	Crements	for fin &	o yellow	_
THETA = plug rotation angle, degree				attack *	6. 10.	, 12- and	14 degrees	The B	9-01 bre	20.00	Sans i se
10 = turnel total temperature, degrees F				data are	plotted	in conica	Coording	tes elong	with the	COUNCE	CLOSS.
TW = wall temperature, degrees f				plane da	ita later	plane data later. PE is defined as the edge pressure value along	efined as	the edge	pressure	is an is	500
VCO= virtual conical origin				each spa	each spanwise row	÷					,
VCUp= VCU based upon the wall pressure distribution	ibution										
	2				- TOO IN	•					
= streamuise distance	dge, inches									- <u>•</u>	
Y = spanwise distance, inches					×	-	DELY	\$ X	DEI Y/YS	٥	90/0
YS = local spanuise distance from fin to inv		inches		t						(DE (B)	
= spanwise distance from	by the TS			2.				0.369	4.450	1	1.000
YLE = spanuise distance from fin leading edge, inches	le, inches			۶.				0.369	0.07	0.70	0.991
Z m vertical distance above plate, inches				~ .		1.572	1.360	0.369	3.690	0.761	
	***********	*****		,,				9.369	3.311	9.7	
INCOMING BOUNDARY LAYER DO	CUMENTATION			jr				76.0	2.93	6.6	
	**********	******	*******	i ~i	5.003			, S	5.5	9 6	
				.2				0%	Ŕ	5	
The incoming turbulent boundary layer Pitot profile was measured 19.3 in.	profile was me	asured	19.3 in.	2.				0.369	1,412	1.032	
(49.0 cm.) downstream of the flat plate leading edge and approximately	ling edge and a	pproxim	stely	.5				0.369	1.032	1.066	
(2) and Ditat presents (8100) term managed dispatible of the	ng edge. Heig	000 L	Moight above the wall	, ,				0.369	0.652	1.142	
pressure distribution (BLP) was assumed to be linear as was the local	e linear as wa	The v	ומיונ אנשן	, ,				727	5/2.0	1.244	
total temperature distribution (BLTO). Loca	Local Mach number (BLM) was	(BLM) &	ş	.2	2.378			95,0	3.350	200	
calculated.				.2				957.0	3.029	0.761	
5		i		~; ~				0.436	2.708	0.768	
(aise)	(Seis)	100		, ,				95.5	2.387	0.827	
0.57008E-01 0.752			5	; ~				9,7	272	2.0	
0.59449E-01 0.751				2,				927.0	, X	200	
0.63031E-01 0.750			\$.2				0.436	, 2	. 6	
0.66614E-01 0.748			: 3	~ `				9.436	0.783	1.07	
0.094449E-01			5.5	ri r				97.70	297.0	1.178	
0.758665-01 0.745			à S	,		3.5	057.	2.569	2.800	2.3	
0.743			: 55	. 2				369	121	8 2	
0.86260E-01 0.742	9.452 3.08	265.37	25	2.	5.009	1.222	1.010	0,369	2.741	26.	1.029
0.741			~ !					0.369	2.361	0.867	
0.7637.26 0.7.37			<u>`</u> ∶	. 2.	2 2			0.369		70	1.343
			. &			225	200	3,00	777.	6.	1.373
					;			Ì	5	:	J # *

1,000 0,991 0,995

1.362 2.597 0.775 0.362	1.073
3.751 2.507 2.507 2.507 2.507 2.507 2.508 2.	0.825
888888888888888888888888888888888888888	3.490
	0.368
1.357 1.217	987.1
ARPHAR 14:01 1:031 1:041	. 'd
1.995 1.995	.,486

1.590 1.686 0.992 1.005 1.144 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348	P/PE 1,000 0,973 0.967	0.967 0.967 0.982 1.083 1.273 1.272 1.522 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520	1,000 1,196 1,478 1,573 1,572 1,561 1,700 1,000 1,000	1.186 1.186 1.186 1.186 1.186 1.286 1.000	1,587 1,960 2,530 2,530 1,000 0,985
1,224 1,298 0,770 0,770 0,881 0,981 1,011 1,048 1,056 1,140 1,140	19.6 (psia) 0.779 0.758 0.753	0.758 0.753 0.753 0.844 0.992 1.104 1.104 1.106 1.757 0.757	0.757 0.905 1.037 1.119 1.1190 1.1182 1.355 1.683	0.770 1.057 1.057 1.196 1.184 1.189 1.189 1.199 1.159	1.525 1.509 1.948 21.5 P (psia) 0.758
0.462 0.083 3.189 2.548 2.548 2.548 1.566 1.566 1.566 0.943 0.623	BETAO= DELY/TS 4.553 4.164 3.775 4.553	4,164 3,775 3,775 2,997 2,608 2,219 1,641 1,641 1,641 1,663 6,63 1,692 3,692 3,693	3.035 2.046 2.046 1.721 1.393 1.064 0.736 3.969 3.969	3.191 2.802 2.802 2.413 1.246 0.857 0.079 3.199 3.199 2.542 2.214 1.885 1.885	
0.369 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436				927-0 92-0 92-0 92-0 92-0 92-0 92-0 92-0 92	
0.170 0.030 1.392 1.252 1.112 0.972 0.692 0.552 0.552 0.552		1,499 1,239 1,239 0,739 0,539 0,539 0,539 1,574	1.294 1.154 0.874 0.734 0.594 0.174 1.429	1.149 1.009 1.009 1.009 1.364 1.364 1.364 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084 1.084	0.384 0.244 0.104 0.104 (in.) 1.637 1.497
0.382 0.242 1.642 1.502 1.362 1.362 0.942 0.802 0.562 0.562	PHA= 10.0 Y (in.) 1.992 1.852 1.712 1.702	1.852 1.772 1.572 1.572 1.592 1.012 0.872 0.592 0.592 1.992	1,712 1,572 1,292 1,152 1,012 0,732 0,592 1,782	1.562 1.362 1.362 0.962 0.662 0.562 1.782 1.782 1.782 1.562 1.562 1.562 0.942	0.802 0.662 0.522 0.522 Y (fn.) 2.061 1.921
2.099 2.099 2.378 2.378 2.378 2.378 2.378 878.2 878.2 878.2 878.2 878.2 878.2 878.2 878.2 878.2 878.2	x (in.) 2.002 2.002 2.002 2.002	2002 2002 2002 2002 2002 2002 2002 200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.002 2.002	2.371 2.371 2.371 2.371 x (in.) 1.995 1.995

************* Surface Flow Visualization Results ************

The following table Lists the results from the SFVP study. The inception length (LI), and angles of upstream influence (BETAU) and primary separation line (BETASI) are presented below (DEITA=0.25 in.).

BETAS1	(06 9) 20.	χ.	27.	.:	7	7.
BETAU	(deg) 22.	\$2	۶,	34.	36.	*
L1/DELTA	77.7	82.7	3.76	3.16	2.72	W/W
AL PHA	(0cd) 0.0	8.0	10.0	12.0	14.0	15.0 (Gibson)

Using the primery separation line (clearly seen on the SFVP) and the inviscid shock trace (calculated analytically) a VCD can be determined from the intersection of these two features.

Location of VCOv from Primary Separation Line and Inviscid Shock Wave

Y/0EL1A	-2.04	.1.76	.1.60	-1.36	.1 40
X/DELTA	4.6	27.5-	-4.52	3.48	76 2.
At PHA (deg)	6.0	8.0	10.0	12.0	0 71

The locations of the virtual conical origin of the pressure fields, obtained by matching features of the various cross plane distributions and extrapolating back to the VCDp, are list below.

Location of VCOp from Pressure Distributions

1/0EL1	1,44
X/DELTA	-3.55 -1.90
ALPHA	8.0 16.0

ennessennessen Sparmise Heat Transfer Data excessessessesses

Next are given the spanwise heat transfer measurements for fin angles of attack of 6-, 8-, 10-, 12-, 14- and 16-degrees. Data from four runs were combined to produce a distribution with increased spatial resolution.

ALPHA= 6.000 BETA0= 16.100

<u>۔</u>	28.6E		CHE* 0.00050	3				
J	-	DELY	۲s	DELY/YS	2	, 000	ð	CH/CHE
5	3	_			Ξ	(BTU/FI^2sec)	sec)	
8	- 88.	1.675	0.369		78,53	969.0	0.00050	
ŝ	1.3%		0.369		82.59	0.705		
80	1.043	_	0.369	5.26	81.23	<u>8</u> .30	0.00058	1.160
ŝ	0,762	_	0.369		70.26	0.841	0.00066	
ŝ	0.481	_	0.369		87.39	1.346	0.00103	
ë ë	301.52(F)	Ī	CME * 0.00050	050				
×	۲	DELY	۲S	DELY/YS	2	000	3	CH/CHE
<u> </u>	Ę.	<u></u>			3	MTHINET 2 CAN	(393	

		EXCERPT. SEE DATA FILE: RODI.DAT
1.100 1.000 1.280 1.280 1.720 1.720 1.020 1.020 1.184 1.306 1.571 2.102	СИ/СИЕ 1.000 1.000 1.100 1.100 1.140 2.120 1.000 1.020 1.420 1.420 2.360	CH/CHE 1.122 1.000 1.449 1.306 2.061 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.003 1.003 1.003
0.00055 0.00056 0.00064 0.00065 0.00066 0.00058 0.00058 0.00058 0.00054 0.00054 0.00054 0.00054	CH 0.00050 0.00051 0.00055 0.00057 0.00067 0.00051 CH CH CH CH CH CH CH CH CH CH CH CH CH	CH 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054 0.00054 0.00054 0.00054 0.00054 0.00054 0.00055 0.0005 0.00055 0.0005
0.691 0.632 0.749 0.792 1.036 1.036 0.577 0.599 0.645 0.645 0.645 1.281	0001 0.648 0.677 0.677 0.775 0.775 0.828 1.411 0001 0.633 0.633 0.633 0.633 1.413	9007 0.672 0.673 0.613 0.813 0.785 1.179 0.654 0.654 1.096 1.0
95.13 99.27 101.08 103.72 103.72 105.50 105.50 105.50 105.50 105.50 105.50	7	# 1
69 4.00 69 3.24 69 2.47 69 1.71 69 1.71 69 4.16 69 3.40 69 2.64 69 1.11 69 1.13 69 1.13 69 1.13 69 1.13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00049 342 4.07 342 3.28 342 1.77 342
	* 000000	
1.474 1.193 0.912 0.631 0.550 0.550 (in.) 1.254 1.254 1.254 0.697 0.611	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.537 1.155 1.157
1.685 1.406 1.173 0.082 0.561 0.561 (in.) 1.76 (in.) 1.76 1.76 1.76 0.903 0.0622	2 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	300.61(F) (fin.)
2.009 2.009 2.009 2.009 2.009 2.009 2.009 2.009 2.009 2.009 2.009	10= 301 × (in.) (2.009 1 2.009 1 2.009 0 2.009 0 2.000 0 2	70# 3 2.007 2.

Author: Settles, G. S., et al

Geometry: 2-D Compression Corner

Mach number: 3

Data: p_{wall}, c_f, mean flowfield pitot surveys

Settles, G. S., Fitzpatrick, T. J. and Bogdonoff, S. M., "Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow," *AIAA Journal*, Vol. 17, No. 6, June 1979, pp. 579.

Settles, G.S., Gilbert, R.B. and Bogdonoff, S.M., "Data Compilation For Shock Wave/Turbulent Boundary Layer Interaction Experiments On Two-Dimensional Compression Corners," *Princeton University Report 1489-MAE*, Princeton Univ. 1980.

The data consist of both mean surveys of flow properties before and after twodimensional compression corners at Mach numbers in the vicinity of 2.9. Compression corner angles of 8, 16, 20, and 24 degrees span the range from attached flow to large boundary-layer separation. Two-dimensionality of the experiments was demonstrated by studies of spanwise oil-flow patterns for all but the largest compression corner angle, where significant 3-D perturbations were observed.

The mean data include surface pressure and skin friction distributions, as well as pitot and static pressure distributions from which velocity and Mach number were deduced (the total temperature distribution through these interactions was nearly constant). Note: the fluctuating data corresponding to this mean dataset were presented in the file SMITS.DAT in Ref. 1 and remain unchanged. The present correction and re-tabulation covers only the meanflow data. It is given as file SETTLES2.DAT on the accompanying diskette.

All units in the tables are SI. The x-coordinate is defined in the streamwise direction along the wind tunnel floor and compression corner surfaces. Thus locations upstream of the corner have negative x-values and those downstream have positive values. The compression corners were all located at 1.205 m downstream of the wind tunnel nozzle exit with the exception of the 24 degree corner for hot-wire measurements only, which was located 1.17 m downstream of the nozzle exit. The y-coordinate is measured upward from the test surface with its origin at that surface. The origin of the z-coordinate is on the wind tunnel centerline. It is taken positive to the left when looking downstream. See the diagram of the flow configuration reproduced below.

Users are encouraged to consult the cited references for detailed discussions of the data and their significance, which are beyond the present scope, as well as estimates of the various errors and discrepancies which serve to set confidence limits upon the data.

SCHEMATIC DIAGRAM OF FLOW CONFIGURATION

COMPRESSION CORNERS

PRINCETON HIGH REYNOLDS NUMBER SUPERSONIC WIND TUNNEL TUNNEL WIDTH= 20,32 cm

SETTLES et al 2 D. COMPRESSION COMMEN INTERACTIONS SETTLES to COMMENT INTERACTIONS	2.0. 27:1	1.47	1.48 -0.18	1.52 0.00	1.57 0.16	1,60 0.24	1.65 0.32	0,40	75 6	27.0	56.0	72 1	2.2	3.81	1.74	7.62	1.76 11.43		20 DECEE DAMP		X, Cm Pwall/PlNF X, Cm Pwell/PlNF		5.08 0.99 .7.62 1.02	1.00	1.00	1.05	1.16	1.32	1.44	1.56	1.00	77.1	1.76 -0.25	1.78 0.0	1.82 0.51	1.85	1.87 2.54	1.90	1,91 5.08	1.94 6.10	-0.08 1.97 7.11 3.89	\$0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.06 10.67	2.12	2.20		1.27 2.53	2.22 2.83			24.5 20.7 24.5 7 11		seasseasseasseasseasseasseasseasseassea		SPECTORER VALUES MAY NOT EXAMPLY MAYOU MANDELLE VALUES OF THE	TREESINGAN VALUES ANI MOI EARLILI MAICH MONINAL VALUES	ALPHA=8 DEG RAMP, Z = .0.0127, PRESTOW TUBE DIA = 8.130E-04 m		X PT1 TT1 TAUMAL CF		
ESC.OAT REVISED 7/18/93 SETTLES et al 2-D COMPRESSION CORNER "= compression corner angle, degrees "= boundary layer displacement thicknes "= boundary layer displacement thicknes "= boundary layer displacement thicknes "= recestream total pressure, N/m**2 "Herestream total pressure, N/m**2 "Herestream total pressure, N/m**2 "Herestream total pressure, N/m**2 "Herestream total temperature, K " = flat plate wall temperature ahead of "= boundary layer momentum thickness, C "Freestream density, Kg**2 ON = Wind turnel test section (1, 2, or " = flat plate wall temperature, M " = flat plate wall temperature, K " = flat plate wall temperature, K " = flat plate wall temperature, M " = flat plate			INTERACTIONS	电传电子电子电子电子电话电话 医克拉克氏 医克拉克氏病 医克克克氏病 医克克克氏病 医多克克氏病 医多克克氏病 医多克克氏病 医多克克氏病 医多克克氏病 医多克克氏病					ED 'SS	يون ا					5; see source document)		E	interaction		late or ramp,	ured along direction		E	COMDITIONS	中国教育教育会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	nce from nozzle to compression		医非线性性性性性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性	76	2.8	2.36E+04 N/m**2	262 K	276 K	2 3	C.5 CM	0.12		如果在我们的事情也是我们的事情,我们的事情的 医克克特氏病 医克格特氏病病病病病病病病病病病病病病病病病病病病病病病病病病病病病病病病病病病病								EE RAMP		JN (d/) NP	5	0,1	1.00	1.00	1.00	25°-	1.03	-1.95	1.08	1.18	. SC	24,	5
ESC.DAT REVISED SETTLES et al SETTLES et al ANAMAL/RHOIMF-ure A Nominal incomina incominal incomin	7/18/93	**************************************	2-D COMPRESSION CORNER		DEFINITIONS	1	מות ו	thickness cm	r displacement thickne	g freestream Mach numb	ic pressure, N/m**2	pressure, N/m**2	ure, N/m**2	ensity, kg/m**2	test section (1, 2, or	ress, N/m**2	temperature f	temperature shead of	ocity, m/s		e, zero at model, meas		from model centerline,	REESTREAM AND INCOMING	**************	Re/m = 6.3E+07, Dista		********************										***UNCERTAINTIES*****						Mare 10 30100000000000000000000000000000000	איאיני יאנטטעה עוטואום	16 DEGR	•	X, CH	80 v.	18, 14	-2.23	19.1-	1.58	5 0	-0.87	62.0-	-0.71	\$ 0° 6	0C.U.) }	07 0-
그림 김 김 그를 들었으면 5년 본 본 분 5년		******	SETTLES et al				* COMPLESSION CO	= boundary lever	* = boundary laye	* Nominal incoming	Freestream stat	Freestream total	all = Wall press	= Freestream d	N = Wind tunnel	Uall shear st	Freetreem total	= Flat-plate wal	Freestream velo	treamwise coordin.	ertical coordinate	Survey line, m	Danwise distance	NOM! NAL FI	************	ses: freestream	- = 198 cm.		œ	2.87				246	2,47	0.13	<u>'</u>	***********	44 -	# <u>u</u>	± 5%	77 +	± 3%	3 (3444444444444	5	EE RAMP		ANIA/) IOMA	1.00	9,1	9.	1.02	50.7	1.13 E.13	1.22	1.35	1.42	G.1.	03°-	?:	7.4 L

;	\$.720E.02 6.894E+05 2.670E+02 1.796E+02 1.263E+03	A ROLF+05 2.670E+02 2.550E+02	.894E+05 2.670E+02 2.726E+02		. 3/6.1	X DII III TAUAAL CF		6, 8946+03 2, 620E+02 1, 406E+02 4, 604E+02	2,620E+02 1,180E+02	6.894E+05 2.620E+02 9	6.894E+U3 2.620E+U2 7.11=C-31	2,620E+02 8,549E+01	6.894E+05	6.894E+05	2.620E+02 4.197E+01	050F-02 6.894F+05 2.620E+02 6.496F+01 4	6,894E+05 2,620E+02 1,180E+02 E	6.894F+05 2.620E+02 1.559E+U2	6.894F+05 2.640E+02	2.620E+02 2.910E+02	6.8946+05	**************************************	FREESTREAM VALUES MAY NOT EXACTLY MATCH NOMINAL VALUES CITED EARLICK		essassassassassassassassassassas a (phg) by a c B degreessassassassassassassassassassassassass	NO IT IT THE TABLE TO THE TABLE	FLOOR-VERTICAL	ıı	Z SHOWN HERE IS FOR	282.9 CAMPT	= 2.870	ref SPACE LIMIT	TAU WALL = 133.5 PRECLUDE A COMPLETE			2.060 0.9848 0.5630 1.063	0.6607 1.335 FLLE SELLEGE	3,010 0,9843 0,6847	0.1516E-02 3.204 0.7834 0.7130 1.487	3,487 0,9826 0,7289	3,639 0,9818 0,7413 1.	3.834 0.9824 0.7665 1.	4,176 0.9866 0.7784 1.	785.7	1 0180 0 1280 0 212	4,000 0,9782 0.8250	5.096 0.9757	5.348 0.9731 0.0463	5,709 0,9680 0,8651	5.883 0.9707 0.8698 2	6.057 0.9712	6.243 U.9650 U.8940 6.400 U.9659 U.8940	578	K. And II. 467(II U. 4002
	,925E-04	7.875E-04	9,225E-04 9,201F-04	7.800E · 04	7.665E · 04	8.369E-04	7,003e-174 9,447E-04	1.021E-03	1,091E-03	1.201E-03	1,230E-03	1.253E-05 1.296F-03	1.327E-03	1.349E-03	1.359E-03	1,4196.03	1,4998-03	1.487E-03	1.518E-03	1.518E-03 1.558E-03		8.38E-U4 m	ť	0.0350	9.835E·04	1,018E-03	9.299E-04	2.5726.05	2.4046-04	2.568E-04	70-3266-9 9-338-07	7.858E-04	1.021E-03	1.2716-03	1,4516-03	1.892E-03	2.0116-03	2.077E-03	8.130Е-04 ш	ž		9.968E · 04	8.854E-04 5.721E-04	3,181E-04	1.447E-04	1.388E-04 7.007E-05	1,1896-04	2.732E-04	3.222E-04 5.185F-04	5.665E-04	6.287E-04	6.911E-04	9.351E-04	1 1500,003
						1,115E+02		1.360€+02	1.452E+02	1.5996+02	1.638€+02	1.669E+02		1.796E+02	1,810E+02	1.890E+02	1.996E+02	1,980E+02	2.022E+02	2.022E+02		TUBE UIA. =	TAUNAL		1.338E+02				2706+01		5126+01	20+3690	1.388E+02		1.973E+02	2.574F+02	2.735E+02	2.825E+02	TUBE DIA. =	TAIRIA		1.417E+02	1.258E+U2 R 131E+01	4.521E+01	2.056E+01	1.973E+01	1.690E+01	3.883E+01	4.580E+01	8.0516+01	8.936E+01	9.822E+01	1.329€+02	1 41.75.07
	780E+02	780E+02	780E+02	780F+02	780E+02	780E+02	780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780€+02	2.780E+02	2,780E+02	2./80E+02	2,780E+02	2.780E+02	2,780€+02 2,780€+02	(.0127, PRESTON	111		2.650E+02 2.650E+02	2.650E+02	2.650E+02	2.650E+02 2.650E+02	2.650E+02	2.650E+02	2.650E+02	2.650E+02	2.650E+02	2.650E+02	2.650€+02	2.6505+02	2.650E+02	2.650E+02	1127, PRESTON		-	2.670E+02	2.670E+02 2.470E+02	2.670E+02	2.670E+02	2.670E+02	2.670€+02	2.670€+02	2.670E+02	2 4705+02	2.670E+02	2.670E+02	2.670E+02	4
										6.894E+U5 6.894E+05										6.894E+05		RAMP, Z = . 0,0	111	1	6.894E+05 6.894E+05	6.894E+05	6.894E+05	6.894E+U5	6.894E+05	6.894E+05	6.894E+U5	6.894E+05	6.894E+05	6.894E+05	6.894E+05	6.894E+U3	6.894E+05	6.894E+05	RAMP, Z = -0.0127		-	6.894E+05	6.8948+05	6.894E+05	6.894E+05	6.894E+05	6.894E+U5	6.894E+05	6.894E+05	6.894E+U5	6.894E+05	6.894E+05	6.894E+05	1, 801,64,05
	520E-02	620E - 03	080E - 03	540£ - 05	5406-03	03	6206-03	3 2	20	2 6	20	20 20	2 2	3 2	20	20	2 2	070E-02	5 5		5	ALPHA=16 DEG RA	×		-3.810E-02 -2.540E-02	20	63	S 6	38	٠ د د	3 5	3 8	۶ ۾	3 6	20	3 5		1,400E-01	ALPHA=20 DEG R	;	×	-3.810£-02	· 2.220E · 02	1.9106-07	-1.270E-02	110	3.970E-03	9.5306-03	1,270E-02	1.590E-02	2.220E-02	2.540E-02	3, 1806-02 4, 1306-02	E0 3033
																									42	2																												

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1994	3. REPORT TYPE AN Contractor Re	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Hypersonic Shock/Boundary New and Corrected Data	/-Layer Interaction D	atabase:	77.4 70 704
6. AUTHOR(S)			NAG2-781
Gary S. Settles and Lori J. D	odson		
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Department of Mechanical I Penn State University University Park, PA 16802			A-94078
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(I	ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
National Aeronautics and Sp Washington, D.C. 20546-00	•		NASA CR-177638
11. SUPPLEMENTARY NOTES			
Point of Contact: Joseph M (415) 604		ch Center, MS 229-1,]	Moffett Field, CA 94035-1000
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
Unclassified-Unlimited			
Subject Category – 34			
13. ABSTRACT (Maximum 200 words) An effort was begun in 198	20 at the Penn State IIn	iversity Gas Dynamics	Laboratory to perform a critical

An effort was begun in 1989 at the Penn State University Gas Dynamics Laboratory to perform a critical review of the available hypersonic data and to assemble a selected database for purposes of computational fluid dynamics (CFD) code validation and turbulence modeling. The effort was sponsored by the National Aero-Space Plane (NASP) Program through NASA Ames Research Center, and was a part of an overall task to develop compressible turbulence models. NASA CR-177577, a database report on hypersonic shock wave/turbulent boundary-layer interactions, was the product of phase 1 of that effort. Phase 2 produced a similar database, NASA CR-177610, covering the topics of attached hypersonic boundary layers in pressure gradients and compressible turbulent mixing layers. The present report represents the result of the third and final phase: namely, recent additions and corrections to the hypersonic shock wave/turbulent boundary-layer interaction database originally given in NASA CR-177577. Seven new datasets are presented, consisting of supersonic and hypersonic experiments using single- and double-fin shock wave generators and a compression corner shock wave generator. Finally, typographical and other errors occurring in NASA CR-177577 have been corrected in a section of the present report, including clarification of some issues which were raised with regard to the original database by users in the interim.

14. SUBJECT TERMS	15. NUMBER OF PAGES		
Hypersonic, Shock wa	46		
· · ·	16. PRICE CODE		
Shock wave/boundary-	A03		
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified		

-				
•				
•				
,				
•	·			
	- •			